Genetic and Survey Data Improves Performance of Machine Learning Model for Long COVID

Author:

Wei Wei-Qi1ORCID,Guardo Christopher1,Gandireddy Srushti1,Yan Chao1ORCID,Ong Henry1,Kerchberger Vern1,Dickson Alyson1ORCID,Pfaff Emily2ORCID,Master Hiral1,Basford Melissa3,Tran Nguyen4,Mancuso Salvatore4,Syed Toufeeq5,Zhao Zhongming6ORCID,Feng QiPing7,Haendel Melissa8ORCID,Lunt Christopher9,Ginsburg Geoffrey10ORCID,Chute Christopher11ORCID,Denny Joshua10,Roden Dan12

Affiliation:

1. Vanderbilt University Medical Center

2. University of North Carolina, USA

3. Vanderbilt Institute of Clinical and Translational Research/Vanderbilt University Medical Center

4. Stanford University School of Medicine

5. UTHealth Houston

6. University of Texas HSC Houston

7. Department of Medicine, Vanderbilt University Medical Center

8. University of Colorado

9. All of Us Research Program

10. All of Us Research Program, National Institutes of Health

11. Johns Hopkins University

12. Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN

Abstract

Abstract Over 200 million SARS-CoV-2 patients have or will develop persistent symptoms (long COVID). Given this pressing research priority, the National COVID Cohort Collaborative (N3C) developed a machine learning model using only electronic health record data to identify potential patients with long COVID. We hypothesized that additional data from health surveys, mobile devices, and genotypes could improve prediction ability. In a cohort of SARS-CoV-2 infected individuals (n=17,755) in the All of Us program, we applied and expanded upon the N3C long COVID prediction model, testing machine learning infrastructures, assessing model performance, and identifying factors that contributed most to the prediction models. For the survey/mobile device information and genetic data, extreme gradient boosting and a convolutional neural network delivered the best performance for predicting long COVID, respectively. Combined survey, genetic, and mobile data increased specificity and the Area Under Curve the Receiver Operating Characteristic score versus the original N3C model.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3