Assessment of the New Kinetically Limited Linear Driving Force Model for Predicting Diffusion Limited Adsorption Breakthrough Curves

Author:

Adegunju Sulaimon A.1,Amalraj Pravin B. C. A.1,Holland Charles E.1,Nicholson Marjorie J.1,Ebner Armin D.1,Ritter James A.1

Affiliation:

1. University of South Carolina

Abstract

Abstract The new kinetically limited linear driving force (KLLDF) model was assessed against the traditional LDF model in the prediction of twelve different ternary and quaternary experimental breakthrough curves. These breakthrough curves comprised mixtures of CO2, N2 and CH4 in He adsorbed on carbon molecular sieve MSC 3K 172 and were conducted at various pressures (30, 50 and 100 psia) and at ambient temperature. The LDF and KLLDF models were implemented in the dynamic adsorption process simulator (DAPS) with the loading dependent LDF mass transfer coefficients and the single gas equilibrium adsorption isotherms measured independently with gravimetric uptake experiments. To make the comparison between the LDF and the KLLDF models as fair as possible, they utilized the same set of thermodynamic and kinetic parameters in DAPS, with no adjustments to any of them. Both the LDF and KLLDF models provided reasonable predictions of the experimental breakthrough curves and in-bed temperature histories, with general trends of no CH4 uptake, gradual N2 uptake and fast CO2 uptake. However, the KLLDF model always provided better predictions, especially when CO2 was present. The results revealed that the traditional LDF model led to depressed adsorbed phase loadings of CO2, thereby underpredicting its breakthrough time in all cases. This depression stemmed from the equilibrium loading in the LDF driving force of the LDF model depending on the gas phase partial pressure of each component outside the pore structure. In contrast, the KLLDF model corrects this issue by making the equilibrium loading in its LDF driving force dependent on the actual loading of each component inside the pore structure. In conjunction with the extended mixed gas Langmuir model, the KLLDF model is perhaps the more appropriate model to use instead of the LDF model for any multicomponent adsorbate-adsorbent systems, whether diffusion limited or not, since it reduces to the LDF model for systems that do not exhibit significant diffusional limitations.

Publisher

Research Square Platform LLC

Reference25 articles.

1. Intraparticle adsorbate concentration profile for linear driving force model;Sircar S;AIChE J.,2000

2. Why does the linear driving force model for adsorption kinetics work?;Sircar S;Adsorption,2000

3. Yang, R.T.: Gas Separation by Adsorption Processes. Butterworths, Boston (1987)

4. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. John Wiley and Sons, New York (1984)

5. Kinetically limited linear driving force model for diffusion-based adsorptive separations;Adegunju SA;Ind. Eng. Chem. Res.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3