Abstract
Abstract
Alumina (Al2O3) nanoparticles (NPs) are particularly adsorbent NPs with a high specific surface area (SSA) that may well be utilized to clean water. In this study, pure γ-alumina NPs are successfully synthesized by the co-precipitation method, and the effect of ammonium bicarbonate concentration on the synthesized NPs is studied to find the optimum concentration to provide the highest capacity of copper ions removal from water. The results declare that spherical alumina NPs with average diameters in the range of 19–23 nm are formed with different concentrations of precipitation agent, and the concentration has no significant effect on the morphology of NPs. Furthermore, the precipitating agent concentration influences the optical characteristics of the produced alumina NPs, and the bandgap energies of the samples vary between 4.24 and 5.05 eV. The most important impact of precipitating agent concentrations reflects in their SSA and the capacity of copper ion removal. Ultra-high SSA = 317 m2/g and the highest copper removal are achieved in an alkalis solution followed by a neutral solution. However, admirable copper removal of 98.2% is even achieved in acidic solutions with a given concentration of ammonium bicarbonate, so this sample can be a good candidate for Cu ions removal from acidic water.
Publisher
Research Square Platform LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献