Exploring the Molecular Mechanisms of Asthma Across Multiple Datasets

Author:

Guo Lianshan1,Huang Enhao2,Wang Tongting3,Song Jin1,Li Zhengzhao1

Affiliation:

1. Department of Emergency,The Second Affiliated Hospital of Guangxi Medical University

2. Department of Anesthesiology,The Second Affiliated Hospital of Guangxi Medical University

3. Department of Nursing, The Second Affiliated Hospital of Guangxi Medical University

Abstract

Abstract Objective: The aim of this research was to utilize bioinformatics techniques to explore the molecular mechanisms at the gene level that contribute to asthma, with the objective of discovering new treatment strategies and potential targets for addressing the condition. Methods: The Series Matrix File data files of GSE43696 and GSE67940 were downloaded from the NCBI GEO public database, including expression profile data of 212 patients. Differential gene expression was functionally annotated using clusterProfiler to evaluate relevant functional categories with GO and KEGG. A gene co-expression network was constructed using MEGENA, and feature importance was evaluated by random forest algorithm. Fluorescent quantitative PCR was employed to validate the expression of essential genes, and the variations in KEGG signaling pathways among the groups with high and low expression were examined through GSEA. Asthma targeted therapeutic drugs were predicted using The Connectivity Map. Finally, single-cell sequencing data were annotated and analyzed using the Seurat and celldex packages. Results: This study screened 267 differentially expressed genes between asthma patients and healthy controls from the GSE43696 dataset and further analyzed them using pathway analysis and multi-scale embedded gene co-expression network analysis, ultimately selecting 12 genes as the candidate gene set for random forest analysis. Based on this, five key genes were selected using random forest algorithm, and their expression was validated in the external dataset GSE67940. The expression of C1orf64 and C7orf26 genes was found to be different between the two groups of patients, and these two genes were found to be associated with immune regulatory factors, chemokines, and cell receptors. The mRNA expression levels of C1orf64 and C7orf26 were consistent with the results of the screening by PCR. Further analysis showed that C1orf64 and C7orf26 were enriched in ABC transporters, cell cycle, cell adhesion molecules, and Notch signaling pathways, and were related to other genes related to asthma. Finally, by classifying the differentially expressed genes using the Connectivity Map, potential clues were provided for finding candidate drugs for asthma treatment. Conclusion: This study combined bioinformatics methods to identify key genes and pathways for asthma. C1orf64 and C7orf26 genes may be the core genes in the pathogenesis of asthma in asthma patients compared to healthy controls, providing potential targets for asthma treatment. These results also suggest the potential application of drug prediction analysis using CMap and single-cell sequencing analysis in understanding the molecular mechanisms of asthma.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3