Hybrid Deep Learning for Week-Ahead Evapotranspiration Forecasting

Author:

Ahmed A. A Masrur1,Deo Ravinesh C1ORCID,Feng Qi2,Ghahramani Afshin1,Raj Nawin1,Yin Zhenliang2,Yang Linshan2

Affiliation:

1. University of Southern Queensland

2. Northwest Institute of Eco-Environment and Resources

Abstract

Abstract Reference evapotranspiration (ET) is an integral hydrological factor in soil-plant-atmospheric water balance studies and the management of drought events. This paper proposes a new hybrid-deep learning (DL) approach, combining Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) along with Ant Colony Optimization (ACO), for a multi-step (week 1 to 4) daily-ET forecast. The method also assimilates a comprehensive dataset with 52 diverse predictors, i.e., satellite-derived Moderate Resolution Imaging Spectroradiometer (MODIS), ground-based datasets from Scientific Information for Landowners (SILO) and synoptic-scale climate indices (CI). To develop a vigorous CNN-GRU model, a feature selection stage entails the Ant Colony Optimization (ACO) method implemented to improve the ET forecast model for the three selected sites in Australian Murray Darling Basin. The results demonstrate excellent forecasting capability of the hybrid CNN-GRU model against the counterpart benchmark models, evidenced by a relatively small mean absolute error and high efficiency. Overall, this study shows that the proposed hybrid CNN-GRU model successfully apprehends the complex and non-linear relationships between predictor variables and the daily ET.

Publisher

Research Square Platform LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3