Autonomous Artificial Intelligence Increases Access and Health Equity in Underserved Populations with Diabetes

Author:

Liu T.Y. Alvin1,Huang Jane2ORCID,Channa Roomasa3,Wolf Risa4ORCID,Dong Yiwen1,Liang Mavis1,Wang Jiangxia1,Abramoff Michael5ORCID

Affiliation:

1. Johns Hopkins University

2. Johns Hopkins School of Medicine

3. University of Wisconsin

4. Johns Hopkins University School of Medicine

5. University of Iowa

Abstract

Abstract

Diabetic eye disease (DED) is a leading cause of blindness in the world. Early detection and treatment of DED have been shown to be both sight-saving and cost-effective. As such, annual testing for DED is recommended for adults with diabetes and is a Healthcare Effectiveness Data and Information Set (HEDIS) measure. However, adherence to this guideline has historically been low, and access to this sight-saving intervention has particularly been limited for specific populations, such as Black or African American patients. In 2018, the US Food and Drug Agency (FDA) De Novo cleared autonomous artificial intelligence (AI) for diagnosing DED in a primary care setting. In 2020, Johns Hopkins Medicine (JHM), an integrated healthcare system with over 30 primary care sites, began deploying autonomous AI for DED testing in some of its primary care clinics. In this retrospective study, we aimed to determine whether autonomous AI implementation was associated with increased adherence to annual DED testing, and whether this was different for specific populations. JHM primary care sites were categorized as “non-AI” sites (sites with no autonomous AI deployment over the study period and where patients are referred to eyecare for DED testing) or “AI-switched” sites (sites that did not have autonomous AI testing in 2019 but did by 2021). We conducted a difference-in-difference analysis using a logistic regression model to compare change in adherence rates from 2019 to 2021 between non-AI and AI-switched sites. Our study included all adult patients with diabetes managed within our health system (17,674 patients for the 2019 cohort and 17,590 patients for the 2021 cohort) and has three major findings. First, after controlling for a wide range of potential confounders, our regression analysis demonstrated that the odds ratio of adherence at AI-switched sites was 36% higher than that of non-AI sites, suggesting that there was a higher increase in DED testing between 2019 and 2021 at AI-switched sites than at non-AI sites. Second, our data suggested autonomous AI improved access for historically disadvantaged populations. The adherence rate for Black/African Americans increased by 11.9% within AI-switched sites whereas it decreased by 1.2% within non-AI sites over the same time frame. Third, the data suggest that autonomous AI improved health equity by closing care gaps. For example, in 2019, a large adherence rate gap existed between Asian Americans and Black/African Americans (61.1% vs. 45.5%). This 15.6% gap shrank to 3.5% by 2021. In summary, our real-world deployment results in a large integrated healthcare system suggest that autonomous AI improves adherence to a HEDIS measure, patient access, and health equity for patients with diabetes – particularly in historically disadvantaged patient groups. While our findings are encouraging, they will need to be replicated and validated in a prospective manner across more diverse settings.

Publisher

Springer Science and Business Media LLC

Reference24 articles.

1. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. 2010;376.

2. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy;Lin K;J Diabetes Investig,2021

3. Factors associated with adherence to screening guidelines for diabetic retinopathy among low-income metropolitan Patients;Kuo J

4. Screening for Presence or Absence of Diabetic Retinopathy: A Meta-analysis;Bragge P;Arch Ophthalmol,2011

5. Longitudinal rates of annual eye examinations of persons with diabetes and chronic eye diseases;Lee PP;Ophthalmology,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3