Selective engagement of prefrontal VIP neurons in reversal learning
Author:
Affiliation:
1. IBS, Center for synaptic brain dysfunction
2. Institute for Basic Science
3. University of California, San Francisco
Abstract
To gain insights into neural mechanisms enabling behavioral adaptations to complex and multidimensional environmental dynamics, we examined roles of VIP neurons in mouse medial prefrontal cortex (mPFC) in probabilistic reversal learning. Behaviorally, manipulating VIP neuronal activity left probabilistic classical conditioning unaffected but severely impaired reversal learning. Physiologically, conditioned cue-associated VIP neuronal responses changed abruptly after encountering an unexpected reward. They also conveyed strong reward prediction error signals during behavioral reversal, but not before or after, unlike pyramidal neurons which consistently conveyed error signals throughout all phases. Furthermore, the signal’s persistence across trials correlated with reversal learning duration. These results suggest that mPFC VIP neurons play crucial roles in rapid reversal learning, but not in incremental cue-outcome association learning, by monitoring significant deviations from ongoing environmental contingency and imposing error-correction signals during behavioral adjustments. These findings shed light on the intricate cortical circuit dynamics underpinning behavioral flexibility in complex, multifaceted environments.
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum;McDonald RJ;Behav Neurosci,1993
2. Multiple brain-memory systems: the whole does not equal the sum of its parts;Kim JJ;Trends Neurosci,2001
3. Learning and memory functions of the Basal Ganglia;Packard MG;Annu Rev Neurosci,2002
4. Coordination of multiple memory systems;Gold PE;Neurobiol Learn Mem,2004
5. Memory systems of the brain: a brief history and current perspective;Squire LR;Neurobiol Learn Mem,2004
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3