Modeling Gut Neuro-Epithelial Connections in a Novel Microfluidic Device

Author:

De Hoyos Manolo1ORCID,Yu Xi2,Gonzalez-Suarez Alan2,Mercado-Perez Arnaldo2,Krueger Eugene2,Hernandez Jeric2,Druliner Brooke2ORCID,Linden David R.2,Beyder Arthur2,Chen Sisi2,Fedyshyn Yaroslav2,Revzin Alexander2

Affiliation:

1. Mayo Clinic Rochester

2. Mayo Clinic

Abstract

Abstract Organs that face external environments, such as skin and gut, are lined by epithelia, which have two functions – to provide a semi-permeable barrier and to sense stimuli. The intestinal lumen is filled with diverse chemical and physical stimuli. Intestinal epithelial cells sense these stimuli and signal to enteric neurons which coordinate a range of physiologic processes required for normal digestive tract function. Yet, the neuro-epithelial connections between intestinal epithelial cells and enteric neurons remain poorly resolved, which leaves us with limited mechanistic understanding of their function. We describe the development of a two-compartment microfluidic device for modeling neuro-epithelial interactions, and apply it to form the gut’s neuro-epithelial connections. The device contains epithelial and neuronal compartments connected by microgrooves. The epithelial compartment was designed for cell seeding via injection and confinement of intestinal epithelial cells derived from human intestinal organoids. We demonstrated that organoids planarized effectively and retained epithelial phenotype for over a week. In the second chamber we dissociated and cultured intestinal myenteric neurons including intrinsic primary afferent neurons (IPANs) from transgenic mice that expressed the fluorescent protein tdTomato. IPANs extended projections into microgrooves, surrounded and frequently made contacts with epithelial cells. The density and directionality of neuronal projections were enhanced by the presence of epithelial cells in the adjacent compartment. Our microfluidic device represents a platform for dissecting structure and function of neuro-epithelial connections in the gut and other organs (skin, lung, bladder, and others) in health and disease.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3