Optimizing Radiation Emulator Training: Streamlined Hyperparameter Tuning with Automated Sherpa

Author:

Kim Park Sa1,Roh Soonyoung2,Song Hwan-Jin2

Affiliation:

1. National Institute of Meteorological Sciences

2. Kyungpook National University

Abstract

Abstract This study aimed to determine the optimal configuration of neural network emulators for numerical weather prediction with minimized trial and error by comparing the performance of emulators utilizing neurons obtained from multiple hidden layers (1-5 layers) automatically defined by the Sherpa library. Findings revealed that emulators with Sherpa-determined neurons demonstrated good results, stable performance, and low errors in numerical simulations. Optimal configurations manifested in one and two hidden layers, displaying a moderate enhancement with the incorporation of dual hidden layers. The mean neuron quantity per hidden layer, ascertained by Sherpa, spanned from 153 to 440, culminating in a 7-12 fold acceleration augmentation. These insights could guide the development of radiative physical neural network emulators as automatically determined hyperparameters can effectively reduce trial and error processes while maintaining stable outcomes. Further experimentation is recommended to establish the best balance between speed and accuracy, as this study did not identify optimized values for all hyperparameters. Overall, this research highlights the importance of hyperparameter optimization in designing efficient and accurate neural network emulators for weather prediction.

Publisher

Research Square Platform LLC

Reference25 articles.

1. Akiba T, Sano S, Yanase T, Ohta T, Koyama M (2019) : Optuna: A next-generation hyperparameter optimization framework. Proc. 25th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data Mining, Anchorage, AK, SIGKDD, 2623–2631, https://doi.org/10.1145/3292500.3330701

2. Tree approximation of the long wave radiation parameterization in the NCAR CAM global climate model;Bellochiski A;J Comput Appl Math,2011

3. A neural network approach for a fast and accurate computation of a longwave radiative budget;Chevallier F;J Appl Meteor,1998

4. Use of a neural-network-based long-wave radiative-transfer scheme in the ECMWF atmospheric model;Chevallier F;Quart J Roy Meteor Soc,2000

5. Gustafson L (2018) : Bayesian tuning and bandits: An extensible, open source library for autoML. M.S. thesis, Dept. of Electrical Engineering and Computer Sciences, Massachusetts Institute of Technology, 100 pp, https://dai.lids.mit.edu/wp-content/uploads/2018/05/Laura_MEng_Final.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3