Simultaneous removal of phenoxy herbicides, 2-methyl-4-chlorophenoxyacetic acid and 2.4-dichlorophenoxyacetic acid from aqueous media by magnetized MgAl-LDH@Fe 3 O 4 composite: Application of partial least squares and Doehlert experimental design

Author:

Samadi-Maybodi Abdolraouf1,Ghezel-Sofla Hashem1,BiParva Pourya1

Affiliation:

1. University of Mazandaran

Abstract

Abstract Phenoxy herbicides are families of chemicals that have been developed as commercially important herbicides, widely used in agriculture. Excessive consumption and increasing use of these pesticides to control pests of agricultural products and the continued entry of these pollutants into the environment due to their lack of biodegradability as well as their toxicity and carcinogenicity, has become one of the most challenging environmental problems today. Hormonal-like herbicides 2-Methyl-4-chlorophenoxyacetic acid (MCPA) and (2,4-Dichlorophenoxy)acetic acid (2.4-DCPA) are among the phenoxy herbicides that in mixed form, provide essential tools for modern farming for control of undesirable vegetation on grazing land, in crop, and non-crop lands. Natural clay minerals, especially layered double hydroxides (LDHs), are among the various materials that are used for pesticide adsorbents. LDHs have received special attention, mainly due to the large specific surface area associated with their layered structure, ease of synthesis, and the possibility of modifying their surfaces. In this work, a magnetized MgAl-LDH@Fe3O4 composite was prepared by co-precipitation method and used for the simultaneous removal of MCPA and 2.4-DCPA herbicides from aqueous solution by adsorption process. It should be noted that after the adsorption process, the magnetized MgAl-LDH@Fe3O4 nanocomposite can be separated and collected from the aqueous solution by an external magnet. Characterizations of the adsorbent were performed by various techniques, including Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy and thermal analysis. The partial least square method was used to determine the concentration of each individual herbicide and in the mixture of them in the aqueous solution. Next, simultaneous adsorption of MCPA and 2.4-DCPA by LDH was optimized using Doehlert experimental design. The optimum conditions for adsorption were obtained as, adsorbent dosage 40.20 mg L−1, pH 6.8 and initial concentration 28.35 mg L−1. The equilibrium adsorption data were obtained using the Langmuir, Freundlich, Temkin and Dubinin-Radush-Kevich isotherms models. The results indicated that the experimental adsorption data were controlled by Freundlich models. The maximum adsorption capacity of MCPA and 2.4-DCPA herbicides on the MgAl-LDH@Fe3O4 adsorbent was obtained as, 134.50 and 131.30 mg g-1, respectively. The kinetic data of adsorption process were evaluated as pseudo-first order, pseudo-second order and intraparticle diffusion; the obtained results were well described by the pseudo-second-order model. Adsorption thermodynamic studies were also investigated. The positive ΔH◦ and negative values of ΔG° at various indicated that adsorption process is endothermic and spontaneous in nature respectively. The positive ΔS° value indicates the increase of disorder at the solid-solution interface during adsorption.

Publisher

Research Square Platform LLC

Reference107 articles.

1. EPA, U. (2018). Basic information about pesticide ingredients. US Environmental Protection Agency.

2. An overview of the pesticides’ impacts on fishes and humans;Amenyogbe E;International Journal of Aquatic Biology,2021

3. Pesticides in agriculture and environment: Impacts on human health;Kumar V;Contaminants in agriculture and environment: health risks and remediation,2019

4. Wishart, D. S., Tzur, D., & Knox, C. (2009). Human metabolome database. Genome Alberta & Genome, Canada.

5. Removal of 2, 4-Dichlorophenoxyacetic acid herbicide from aqueous solutions by Functionalization nanoparticles magnetic: Equilibrium, kinetic and thermodynamic studies;Esrafily A;Journal of North Khorasan University of Medical Sciences,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3