The hidden dimension of information diffusion: A latent space representation of Social Media News Sharing behavior

Author:

Pozo Sofía M. del1,Pinto Sebastián1,Serafino Matteo2,Cicchini Tomás3,Moss Federico1,Makse Hernán A.2,Balenzuela Pablo1

Affiliation:

1. Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires, Argentina.

2. Levich Institute and Physics Department, City College of New York, 10031 New York, USA.

3. Instituto del Cálculo (IC), UBA-CONICET, Buenos Aires, Argentina.

Abstract

Abstract In times marked by an abundance of news sources and the widespread use of social media for staying informed, acquiring accurate data faces increasing challenges. Today, access to information plays a crucial role in shaping public opinion and is significantly influenced by interactions on social media. Therefore, studying the dissemination of news on these platforms is vital for understanding how individuals stay informed. In this paper, we study emergent properties of media outlet sharing behavior by users in social media. We quantify this behavior in terms of coordinates in a latent space proposing a metric called Media Sharing Index (MSI). We observe that the MSI shows a bimodal distribution in this latent dimension, reflecting the preference of large groups of users for specific groups of media outlets. This methodology allows the study of the extent to which communities of interacting users are permeable to different sources of information. Additionally, it facilitates the analysis of the relationship between users' media outlet preferences, their political leanings, and the political leanings of the media outlets.

Publisher

Research Square Platform LLC

Reference55 articles.

1. George D. Greenwade (1993) The {C}omprehensive {T}ex {A}rchive {N}etwork ({CTAN}). TUGBoat 14(3): 342--351

2. Greenacre, Michael J (2010) Correspondence analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2(5): 613--619 Wiley Online Library

3. Zhou, Zhenkun and Serafino, Matteo and Cohan, Luciano and Caldarelli, Guido and Makse, Hern{\'a}n A (2021) Why polls fail to predict elections. Journal of Big Data 8(1): 1--28 Springer

4. Juan Manuel P érez and Juan Carlos Giudici and Franco Luque. pysentimiento: A Python Toolkit for Sentiment Analysis and SocialNLP tasks. cs.CL, arXiv, 2106.09462, 2021

5. {ABYZ Web Links Inc.}. Accessed 14 Nov. 2023. http://www.abyznewslinks.com/argen.htm

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3