Diatom-Inspired Silicification Process for Development of Green Flexible Silica Composite Aerogels

Author:

Maleki Hajar1,Tan Valerie1,Berg Florian1

Affiliation:

1. University of Cologne

Abstract

Abstract In this study, we have developed novel biomimetic silica composite aerogels and cryogels for the first time, drawing inspiration from the natural diatom's silicification process. Our biomimetic approach involved the modification of tyrosinase-mediated oxidized silk fibroin (SFO) surfaces with polyethyleneimine (PEI). This modification introduced ample amine groups onto the SF polymer, which catalyzed the silicification of the SFO-PEI gel surface with silicic acid. This process emulates the catalytic function of long-chain polyamines and silaffin proteins found in diatoms, resulting in a silica network structure on the primary SFO-PEI network gel's surface. The SFO-PEI gel matrix played a dual role in this process: 1) It provided numerous amine functional groups that directly catalyzed the silicification of silicic acid on the porous structure's exterior surface, without encapsulating the created silica network in the gel. 2) It served as a flexible mechanical support facilitating the creation of the silica network. As a result, the final ceramic composite exhibits a mechanically flexible nature (e.g., cyclic compressibility up to 80% strain), distinguishing it from conventional composite aerogels. By mimicking the diatom's silicification process, we were able to simplify the development of silica-polymer composite aerogels. It eliminates the need for surfactants, multi-step procedures involving solvent exchange, and gel washing. Instead, the reaction occurs under mild conditions, streamlining the composite aerogels fabrication process.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3