Assessment and Predicting of LULC by Kappa Analysis and CA Markov model using RS and GIS Techniques in Udham Singh Nagar District, India

Author:

ARUMUGAM THANGAVELU1,YADAV RAM LAKHAN2,KINATTINKARA SAPNA3

Affiliation:

1. Kannur University

2. G.B. Pant Institute of Himalayan Environment and Development

3. PSG college of Arts and Science

Abstract

Abstract In this study an attempt to generate the LULC maps and investigate change detection analysis over a period of 22 years using Landsat satellite images of 1994, 2000, and 2016 and to predict the LULCC for the year 2016-2032 using CA Markov model in Udham Singh Nagar district, Uttarkhand. Satellite images of Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI sensor of nominal spatial resolution 30m were used. Supervised image classifications with the help of parallel pipe algorithm were used in this study. The validity of the Cellular Automata Markov model were used to predict future (16 years) LULC of 2032. The estimation includes two modules to predict the future land use pattern of the study area such as MARKOV and CA-MARKOV model/modules. Commonly, the accuracy of the classification results is assessed by the error matrix calculation. The result of overall change detection indicates agriculture, forest, water body and fallow land are decreased by 121.75 Km2 (14%), 44.70 Km2 (5%), 38.91 Km2 (4.5%) and 230.71 (26.5%); settlement and river sand are increased by 379.89 Km2 (44%) and 56.18 Km2 (6%). The study has an overall classification accuracy 76.84%, and standard kappa coefficient value (K) of 0.722. The model predicts the future change detection in agriculture 32%, forest 38%, fallow land 5%, settlement 20%, water body 3%, and river sand is 2%. This study is very effective for future LULC prediction that is helpful in urban development planning and the field of management of natural resources.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3