Semantic segmentation feature fusion network based on transformer

Author:

Li Tianping1,Cui Zhaotong1,Zhang Hua1

Affiliation:

1. Shandong Normal University

Abstract

Abstract

Convolutional neural networks have demonstrated efficacy in acquiring local features and spatial details; however, they struggle to obtain global information, which could potentially compromise the segmentation of important regions of an image. Transformer can increase the expressiveness of pixels by establishing global relationships between them. Moreover, some transformer-based self-attentive methods do not combine the advantages of convolution, which makes the model require more computational parameters. This work uses both Transformer and CNN structures to improve the relationship between image-level regions and global information to improve segmentation accuracy and performance in order to address these two issues and improve the semantic segmentation segmentation results at the same time. We first build a Feature Alignment Module (FAM) module to enhance spatial details and improve channel representations. Second, we compute the link between similar pixels using a Transformer structure, which enhances the pixel representation. Finally, we design a Pyramid Convolutional Pooling Module (PCPM) that both compresses and enriches the feature maps, as well as determines the global correlations among the pixels, to reduce the computational burden on the transformer. These three elements come together to form a transformer-based semantic segmentation feature fusion network (FFTNet). Our method yields 82.5% mIoU, according to experimental results based on the Cityscapes test dataset. Furthermore, we conducted various visualization tests using the Pascal VOC 2012 and Cityscapes datasets. The results show that our approach outperforms alternative approaches.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3