Biomechanical Comparison of Static and Dynamic Cervical Plates in terms of Bone Fusion, Tissue Degeneration, and Implant Behavior

Author:

Chung Tzu-Tsao1,Hueng Dueng-Yuan2,Lin Shang-Chih1

Affiliation:

1. National Taiwan University of Science and Technology

2. National Defense Medical Center

Abstract

Abstract Introduction: Using an anterior cervical fixation device in the anterior cervical discectomy and fusion (ACDF) has evolved to various systems of static and dynamic cervical plates (SCP and DCP). Dynamic cervical plates have been divided into three categories: the rotational (DCP-R), translational (DCP-T), and hybrid (DCP-H) joints. However, little studies have been devoted to systematically investigate the biomechanical differences of dynamic cervical plates. Materials and Methods The biomechanical tests of load-deformation properties and failure modes between the SCP and DCP systems are implemented first by using the UHMWPE blocks as the vertebral specimens. The CT-based C2-C7 model simulates the strategies of cervical plate in ACDF surgery is developed with finite-element analyses. One intact, one SCP and two DCP systems are evaluated for their biomechanical properties of bone fusion and tissue responses. Results In the situation of biomechanical test, The mean values of the five ACDSP constructs are 393.6% for construct stiffness (p < 0.05) and 183.0% for the first yielding load (p < 0.05) less than those of the SCP groups, respectively. In the situation of finite-element analysis, the rigid-induced ASD is more severe for the SCP, followed by the DCP-H, and the DCP-R is the least. Discussion and Conclusions: Considering the degenerative degree of the adjacent segments and osteoporotic severity of the instrumented segments is necessary while using dynamic system. The mobility and stability of the rotational and translational joints are the key factors to the fusion rate and ASD progression. If the adjacent segments have been degenerative, the more flexible system can be adopted to compensate the constrained mobility of the ACDF segments. In the situation of the osteoporotic ACDF vertebrae, the stiffer system is recommended to avoid the cage subsidence.

Publisher

Research Square Platform LLC

Reference10 articles.

1. Fixed vs dynamic plate complications following multilevel anterior cervical corpectomy and fusion with posterior stabilization;Epstein NE;Spinal Cord,2003

2. Pitzen TR, Chrobok J, Stulik J, Ruffing S, Drumm J, Sova L et al. Implant Complications, Fusion, Loss of Lordosis, and Outcome After Anterior Cervical Plating With Dynamic or Rigid Plates: Two-Year Results of a Multi-Centric, Randomized, Controlled Study. Spine (Phila Pa 1976). 2009 Apr 1;34(7):641-6.

3. Anterior cervical spine surgery-associated complications in a retrospective case-control study;Tasiou A;J Spine Surg,2017

4. Stress-shielding compared with load-sharing anterior cervical plate fixation: a clinical and radiographic prospective analysis of 50 patients;Saphier PS;J Neurosurg Spine,2007

5. In vitro evaluation of stiffness and load sharing in a two-level corpectomy: comparison of static and dynamic cervical plates;,Fogel GR;Spine J,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3