Evolving trajectories of COVID-19 curves in India: Prediction using autoregressive integrated moving average modeling.

Author:

Bhandari Sudhir1,Tak Amit1ORCID,Gupta Jitendra1,Patel Bhoopendra2,Shukla Jyotsna1,Shaktawat Ajit Singh1,Singhal Sanjay1,Saini Abhishek1,Kakkar Shivankan1,Dube Amitabh1,Dia Sunita3,Dia Mahendra4,Wehner Todd C4

Affiliation:

1. SMS Medical College and Hospitals, Jaipur, Rajasthan, India

2. Government Medical College, Barmer, Rajasthan, India

3. Medstar Washington Hospital Center, Washington DC-20010, USA.

4. North Carolina State University, Raleigh, NC 27695-7609, USA.

Abstract

Abstract The forecasting of Coronavirus Disease-19 (COVID-19) dynamics is a centerpiece in evidence based disease management. Numerous approaches that use mathematical modeling have been used to predict the outcome of the pandemic, including data driven models, empirical and hybrid models. This study was aimed at prediction COVID-19 evolution in India using a model based on autoregressive integrated moving average (ARIMA). Retrieving real time data from the Johns Hopkins dashboard from 11 Mar 2020 to 25 Jun 2020 (N = 107 time points) to fit the model. The ARIMA (1,3,2) and ARIMA (3,3,1) model fit best for cumulative cases and deaths respectively with minimum Akaike Informaton Criteria. The prediction of cumulative cases and deaths for next 10 days from 26 Jun 2020 to 05 Jul 2020 showed a trend toward continuous increment. The predicted root mean square error (PredRMSE) and base root mean square error (BaseRMSE) of ARIMA(1,3,2) model was 21137 and 166330 respectively. Similarly, PredRMSE and BaseRMSE of ARIMA(3,3,1) model was 668.7 and 5431 respectively. We propose that data on COVID-19 be collected continuously, and that forecasting continue in real time. The COVID-19 forecast assist government in resource optimization and evidence based decision making for a subsequent state of affairs.

Publisher

Research Square Platform LLC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3