Chemical characteristics and health risk assessment of fine particulate matter from typical emission source in Xi'an, Northwestern China

Author:

Meng Ziqi1,Xing Yan2,Zhang Xin2,Niu Shaomin2,Tian Weihua2,Zhang Qian1

Affiliation:

1. Xi'an University of Architecture and Technology

2. Shaanxi Province

Abstract

Abstract

To establish and complete the source profile of fine particulate matter (PM2.5) in a Chinese megacity- Xi’an, the morphology, chemical characteristics and health risks of PM2.5 emitted from different sources were explored. In this study, scanning electron microscope, inductively coupled plasma mass spectrometer, ion chromatograph and carbon analyzer were utilized to analyze and determine the source emission PM2.5 samples. The results showed that PM2.5 emitted from stationary source was mostly regular spherical, while the dust including soil wind dust and urban dust was practically irregular and with large size. PM2.5 of mobile source was aggregated porous carbonaceous particles, and of biomass burning was floc or lamellar. Si was regarded as the marker of soil wind dust PM2.5. Si and SO42− accounted for a relatively high proportion in urban dust PM2.5 (52.2% and 27.9%). Ca could be used as the tracer of construction cement dust due to its high mass fraction. Compared to other sources, mobile source showed higher NO3 proportion while biomass burning was dominated by Na and K. Attributed to relatively higher OC/EC in Xi'an than other cities, the secondary pollution was more serious. The health risk assessment results showed that the risk of Cr through inhalation route was 10− 6~10− 4 for a stationary source, which was over the threshold. In particular, the non-carcinogenic risk and carcinogenic risk of children were all higher than adults.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3