The protective effects of melatonin in high glucose environment by alleviating autophagy and apoptosis on primary cortical neurons

Author:

Lijiao Xiong1,Liu Song2,Liu Chaoming2,Guo Tianting3,Huang Zhihua2ORCID,Li Liangdong4

Affiliation:

1. First Affiliated Hospital Of Gannan Medical University

2. Gannan Medical University

3. Ganzhou People's Hospital

4. First Affiliated Hospital of Fujian Medical University

Abstract

Abstract Cognitive dysfunction has been regarded as a complication of diabetes. Melatonin shows a neuroprotective effect on various neurological diseases. However, it’s protective effect on cortical neurons in high glucose environment has not been reported. Our present study aims to observe the protective effect of melatonin on rat cortical neurons and its relationship with autophagy in high glucose environment. The rat primary cortical neurons damaged model was induced by high glucose. The CCK-8, flow cytometry, Western Blot and immunofluorescence methods were used to examine the cell viability, apoptosis rate and proteins expression. Our results showed that there were no differences in cell viability, apoptosis rate, and protein expression among the control MLT and mannitol group. The cell viability of the glucose group was significantly lower than that of the control group, and the apoptosis rate of the glucose group was significantly higher than that of the control group. Compared with the glucose group, the glucose + melatonin group showed a significant increase in cell viability and a notable decrease in apoptosis rate. Melatonin concentration of 0.1-1 mmol/L can significantly reduce the injury of cortical neurons by high glucose. Compared with the control group, the glucose group showed a significant reduction of Bcl-2 protein expression, while remarkable elevations of Bax, caspase-3, Beclin-1 and LC3B levels. The neurons pre-administered with melatonin obtained significantly reversed these changes induced by high glucose. The phosphorylation levels of Akt and mTOR in the glucose group were significantly lower than those in the control group, were significantly increased in the glucose + MLT group compared with the glucose group. These data indicated that melatonin has a neuroprotective effect on cortical neurons under high glucose environment, which may work by activating Akt/mTOR pathway and following the down-regulation of autophagy.

Publisher

Research Square Platform LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3