Analyzing river disruption factors and ecological flow in China's Liu River Basin amid environmental changes

Author:

Li Mingqian1,Wang He2,Gu Hongbiao3,Chi Baoming2

Affiliation:

1. School of ecology and environment,Institute of Disater Prevention

2. School of Ecology and Environment, Institute of Disaster Prevention

3. Nanjing Tech University

Abstract

Abstract Water resources variability and availability in a basin affect river flows and sustain river ecosystems. Climate change and human activities disrupt runoff sequences, causing water environmental issues like river channel interruptions. Therefore, determining ecological flow in changing environments is challenging in hydrological research. Based on an analysis of long-term changes in hydrological and meteorological variables and interruption conditions in the semi-arid Liu River Basin (LRB), this study summarizes the controlling factors of river interruption at different temporal and spatial scales and proposes a framework to determine ecological flow under changing environments. Hydrological model and the monthly optimal probability distribution (MOPD) were used to determine the optimal ecological runoff of LBR. The results showed that from 1956 to 2017, precipitation and potential evapotranspiration in the basin showed no significant decreasing trend, but the streamflow significantly decreased, and the downstream interruption worsened, with an average annual interruption duration of 194 days at Xinmin Station from 1988 to 2017. The controlling factors of river interruption are: (1) soil and water conservation measures in the upstream significantly reduce the runoff capacity; (2) the operation mode of the controlling reservoir in the middle reaches changes from "all-year discharge" to "winter storage and spring release" to "combined storage and supply,” severing the hydraulic connection between upstream and downstream; and (3) siltation in the downstream river channel coupled with over-extraction of groundwater increases the seepage capacity of the river. The monthly ecological flow of Naodehai Reservoir was determined by considering the monthly seepage losses after reconstructing the natural runoff using the SWAT model and determining the optimal probability distribution function for monthly runoff. The findings are important for downstream LRB ecological restoration and for determining the ecological flow of other river basins in changing environments.

Publisher

Research Square Platform LLC

Reference47 articles.

1. Is reduced freshwater flow in Tigris-Euphrates rivers driving fish recruitment changes in the Northwestern Arabian Gulf ?;Ben-Hasan A;Mar Pollut Bull,2018

2. Advancing environmental flow science: developing frameworks for altered landscapes and integrating efforts across disciplines;Brewer SK;Environ Manage,2016

3. Environmental flow of Changjiang River;Cheng J;J Yangtze River Sci Res Inst,2007

4. China Ministry Of Water Resources (2021) Specification for calculation of ecologicalflow for rivers and lakes. SL/T 2021:712

5. Hydrological trend analysis in the Yellow River basin using a distributed hydrological model;Cong Z;Water Resour Res,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3