An adaptive optimization EEMD method and its application in bearing fault detection

Author:

Liu Xinming,Chen Wenzhuang,Mao Aikun

Abstract

Abstract Aiming at the optimization of two important parameters (white noise amplitude coefficient and set average number) in the set empirical mode decomposition (EEMD), an adaptive EEMD parameter optimization method is proposed. First of all, this paper extracts the corresponding amplitude of the high-frequency component of the signal through the energy value of the first eigenmode function, uses the relative mean square error to determine the corresponding amplitude of the low-frequency component of the signal, and establishes the optimal amplitude evaluation criteria based on the corresponding amplitude of the two; At the same time, in order to improve the calculation efficiency and reduce the influence of white noise, the energy value of the first modal component is used to determine the optimal average number of sets; Then, the effectiveness of the method in this paper is verified by simulation experiments; Finally, this method is applied to the extraction of bearing inner ring fault vibration signal. The results show that compared with the traditional EEMD method, this method can adaptively determine the noise amplitude and the set average number, and can more effectively identify the periodic fault components of the vibration signal.

Publisher

Research Square Platform LLC

Reference16 articles.

1. Huang N E, Shen Z, Long S, et al. The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society of London,1998,454: 903–995.

2. Wu Z H, Huang N E. Ensemble Empirical Mode Decomposition: A Noise Assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41.

3. Mao X, Yang A C, Peng C K, et al. Analysis of economic growth fluctuations based on EEMD and causal decomposition[J]. Physica A: Statistical Mechanics and its Applications, 2020, 553.

4. Stochastic recurrent wavelet neural network with EEMD method on energy price prediction [J];LI JM;Soft Computing,2020

5. Application of EEMD decomposition in power system fault signal detection [J];Chen Ke Li;Computer Simulation,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3