Intra-articular injection of stigmasterol loaded nanoparticles is effective in inhibiting joints destruction in an osteoarthritis rat model

Author:

Lim Ji Hyun1,Kim Sung Eun2,Kim Hak-Jun1,Song Gwan Gyu1,Jung Jae Hyun1ORCID

Affiliation:

1. Korea University College of Medicine

2. Korea University Guro Hospital

Abstract

Abstract Stigmasterol, a plant-derived sterol, sharing structural similarity with cholesterol, has demonstrated anti-osteoarthritis (OA) properties, attributed to its antioxidant and anti-inflammatory capabilities. Given that OA often arises in weight bearing or overused joints, prolonged localized treatment effectively targets inflammatory aspects of the disease. This research explored the impact of stigmasterol-loaded nanoparticles delivered via intra-articular injections in an OA rat model. Employing mesoporous silica nanomaterials (MSNs) combined with β-cyclodextrin (β-CD) as a vehicle, stigmasterol was loaded in conjunction with tannic acid, forming stigmasterol/β-CD-MSNs to facilitate a sustained stigmasterol release. The study employed RAW 264.7 cells to examine the in vitro cytotoxicity and anti-inflammatory effect of stigmasterol/β-CD-MSNs. For in vivo experimentation, we used healthy control rats and monosodium iodoacetate (MIA)-induced OA rats, separated into five groups, varying the injection substances. In vitro findings indicated that stigmasterol/β-CD-MSNs suppressed the mRNA expression of key pro-inflammatory mediators such as interleukin-6, tumor necrosis factor-α, and matrix metalloproteinase-3 in a dose-dependent manner. In vivo experiments revealed a substantial decrease in the mRNA levels of pro-inflammatory factors in the stigmasterol(50 µg)/β-CD-MSN group compared to the others. Macroscopic, radiographic, and histological evaluations established that intra-articular injections of stigmasterol/β-CD-MSNs inhibited cartilage degeneration and subchondral bone deterioration. Therefore, in a chemically induced OA rat model, intra-articular stigmasterol delivery was associated with reduction in both local and systemic inflammatory responses, alongside a slowdown in joint degradation and arthritic progression.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3