Role of NLRP3 inflammasomes in monocyte and microglial recruitments in choroidal neovascularization

Author:

Dieckmann Blake W.1,Paguaga Marcell E.1,McCollum Gary W.1,Penn John S.1,Uddin Imam2

Affiliation:

1. Vanderbilt University School of Medicine

2. Vanderbilt University Medical Center

Abstract

Abstract Though the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice to characterize migration of Ccr2RFP positive monocytes and Cx3cr1GFP positive microglial cells into CNV lesions after laser-induced rupture of Bruch’s membrane. MCC950 was used as NLRP3 inhibitor. Immunostaining was used to confirm localization of NLRP3 inflammasomes in the LCNV lesions. Confocal microscopy was used to image and quantify LCNV volumes. ELISA and qRT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1β protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that RFP positive monocyte-derived macrophages and GFP positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP positive macrophages, Cx3cr1GFP positive microglia, and other cells resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice, showed significantly increased lesion size compared to age-matched controls. Inhibition of NLRP3, resulted in decreased IL-1β mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1β.

Publisher

Research Square Platform LLC

Reference30 articles.

1. Age-related macular degeneration;Mitchell P;Lancet,2018

2. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis;Wong WL;Lancet Glob Health,2014

3. Age-related macular degeneration;Fleckenstein M;Nat Rev Dis Primers,2021

4. NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration;Tseng WA;Invest Ophthalmol Vis Sci,2013

5. A novel optical imaging probe for targeted visualization of NLRP3 inflammasomes in a mouse model of age-related macular degeneration;Paguaga ME;Front Med-Lausanne,2023

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3