On-Line surface roughness classification for multiple CNC milling conditions based on transfer learning and neural network

Author:

Deng Congying,Ye Bo,Lu Sheng,He Mingge,Miao jianguo1

Affiliation:

1. Sichuan University

Abstract

Abstract Traditional on-line surface roughness prediction models are mainly established by surrogate models, which can achieve well prediction accuracies with a fixed tool-workpiece combination. However, a poor prediction accuracy comes to an established model when the tool or workpiece are changed. Then, multiple experiments are required to obtain sufficient new data to establish a new prediction model, increasing the time and economy costs. This paper proposes a data-driven method using transfer learning for on-line classifying the surface roughness under multiple milling conditions. First, a source tool is selected to perform the milling experiments to construct the source data. A stack sparse autoencoder (SSAE) is pre-trained to online classify the surface roughness, where the inputs are the machining parameters and the features derived from the force signals in time and frequency domains. Then, a new tool is selected to perform the milling experiments under fewer milling conditions to construct the target data. The pre-trained SSAE are fine-tuned by re-training the network using the limited target data. Finally, a surface roughness classifier of the target tool is established to adapt to the new milling conditions. Furthermore, a detailed experimental validation is carried out on three different tools of a vertical machining center, indicating a significant potential in establishing an accurate surface roughness classifier with limited milling experiments.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3