A model for eliminating aggregate and specification bias in multivariate fine-scale urban scenarios

Author:

Salehi Afshin,Beni Farkhondeh Ahmadi1,Halabian AmirHossein2,AminiNejad Ramin2,Ganjali Jafar2

Affiliation:

1. University of Isfahan

2. Payame Noor University

Abstract

Abstract

The spatial relationships between predictors and responses are influenced by their frequency and spatial distribution. Ecological bias in regression models can occur due to the aggregate frequency and clustering of independent variables, leading to false, over-, or underestimations. This can be exacerbated by an increase in data resolution, complexity, and variable count, as is often the case in urban research scenarios. To address this issue, a new relationship-estimation model called the Ecologically Corrected Spatial Relationship Estimator (ECSRE) was proposed and compared to Geographically Weighted Regression (GWR). The results showed that ECSRE outperformed GWR by correctly revealing pre-planned relationships in simulated data, presenting a lower influence of aggregate frequencies on the outcome, better suppression of specification errors, higher R2 scores, and better randomness of residuals.

Publisher

Research Square Platform LLC

Reference42 articles.

1. Operational local join count statistics for cluster detection;Anselin L;Journal of Geographical Systems,2019

2. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models;Boria RA;Ecological Modelling,2014

3. Breitung J and Wigger C (2018) Alternative GMM estimators for spatial regression models. Spatial Economic Analysis 13(2). Routledge: 148–170.

4. Bruinsma GJN and Johnson SD (2018) The Oxford Handbook of Environmental Criminology. Oxford University Press.

5. Chen X and Rafail P (2020) Do housing vacancies induce more crime? A spatiotemporal regression analysis. Crime & Delinquency 66(11). SAGE Publications Sage CA: Los Angeles, CA: 1579–1605.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3