Abstract
Abstract
The direct and selective coupling of benzenes with aliphatic hydrocarbons is a promising strategy for C(sp2)-C(sp3) bond formation using readily available starting materials, yet it remains a significant challenge. In this study, we have developed a simplified photochemical system that incorporates catalytic amounts of iron(III) halides as multifunctional reagents and air as a green oxidant to address this synthetic problem. The reaction between a variety of low reactive C(sp2)-H precursors with C(sp3)-H donors has been achieved under mild conditions. The iron halide acts as a multifunctional reagent that responds to visible light, initiates C-centered radicals, induces single-electron oxidation to carbocations, and participates in a subsequent Friedel-Crafts-type process. The gradual release of radical species and carbocation intermediates appears to be critical for achieving desirable reactivity and selectivity. This eco-friendly, cost-efficient approach offers access to various building blocks from abundant hydrocarbon feedstocks, and demonstrates the potential of iron halides in sustainable synthesis.
Publisher
Research Square Platform LLC