Fenretinide inhibits obesity and fatty liver disease but induces Smpd3 to increase serum ceramides and worsen atherosclerosis in LDLR-/- mice

Author:

Thompson Dawn1,Mahmood Shehroz1,Morrice Nicola1,Kamli-Salino Sarah1,Dekeryte Ruta1,Hoffmann Philip A.1,Doherty Mary K.2,Whitfield Philip D.2,Delibegovic Mirela1,Mody Nimesh1

Affiliation:

1. University of Aberdeen

2. University of the Highlands and Islands

Abstract

Abstract Fenretinide is a synthetic retinoid that can prevent obesity and improve insulin sensitivity in mice by directly altering retinol/retinoic acid homeostasis and inhibiting excess ceramide biosynthesis. We determined the effects of Fenretinide on LDLR−/− mice fed high-fat/high-cholesterol diet +/- Fenretinide, a model of atherosclerosis and non-alcoholic fatty liver disease (NAFLD). Fenretinide prevented obesity, improved insulin sensitivity and completely inhibited hepatic triglyceride accumulation, ballooning and steatosis. Moreover, Fenretinide decreased the expression of hepatic genes driving NAFLD, inflammation and fibrosis e.g. Hsd17b13, Cd68 and Col1a1. The mechanisms of Fenretinide’s beneficial effects in association with decreased adiposity were mediated by inhibition of ceramide synthesis, via hepatic DES1 protein, leading to increased dihydroceramide precursors. However, Fenretinide treatment in LDLR−/− mice enhanced circulating triglycerides and worsened aortic plaque formation. Interestingly, Fenretinide led to a 4-fold increase in hepatic sphingomyelinase Smpd3 expression, via a retinoic acid-mediated mechanism and a further increase in circulating ceramide levels, linking induction of ceramide generation via sphingomyelin hydrolysis to a novel mechanism of increased atherosclerosis. Thus, despite beneficial metabolic effects, Fenretinide treatment may under certain circumstances enhance the development of atherosclerosis. However, targeting both DES1 and Smpd3 may be a novel, more potent therapeutic approach for the treatment of metabolic syndrome.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3