Directly Monitoring the Shift in Corrosion Mechanisms of a Model FeCrNi Alloy Driven by Electrical Potential

Author:

Devaraj Arun1ORCID,Liu Tingkun1,Li Cheng-Han1,Olszta Matthew1,Tao Jinhui1

Affiliation:

1. Pacific Northwest National Laboratory

Abstract

Abstract Stainless steels are used in a myriad of engineering applications, including construction, automotives, and nuclear reactors. Developing accurate, predictive mechanistic models for corrosion and electrochemical corrosion kinetics of stainless steels, specifically in chloride environments, has been a topic of research studies over many decades. Herein, we quantified the aqueous corrosion kinetics of a model austenitic Fe–18Cr–14Ni (wt.%) alloy in the presence and absence of applied potential using systematic in situ electrochemical atomic force microscopy (EC-AFM) studies and transmission electron microscopy (TEM). Without an applied bias, dissolution along the vertical direction of corrosion pits is controlled by surface kinetics/diffusion hybrid mechanism, whereas the dissolution along the lateral direction of pits is diffusion controlled. In the absence of an applied bias, both the “nucleation” and “lateral growth” of the pits contribute to total corrosion. When an electrical bias is applied, the increase in corrosion rate is dominated by nucleation of new pits rather than lateral growth of existing ones. This shift in the corrosion mechanism is attributed to the bias-induced redistribution of species with different charges. These insights gained by the in situ EC-AFM will allow applications of this method for quantitative understanding of corrosion of wider class of materials.

Publisher

Research Square Platform LLC

Reference25 articles.

1. A. J. Sedriks, Corrosion of stainless steels, 2011.

2. a) A. Fossati, F. Borgioli, E. Galvanetto, T. Bacci, Corros Sci 2006, 48 (6), 1513, https://doi.org/10.1016/j.corsci.2005.06.006; b) S. Xin, M. Li, Corros Sci 2014, 81, 96; c) N. Srinivasan, V. Kain, N. Birbilis, K. M. Krishna, S. Shekhawat, I. Samajdar, Corros Sci 2015, 100, 544; d) P. T. Brewick, N. Kota, A. C. Lewis, V. G. DeGiorgi, A. B. Geltmacher, S. M. Qidwai, Corros Sci 2017, 129, 54, https://doi.org/10.1016/j.corsci.2017.09.009; e) J. Li, A. E. Hughes, Y. S. Yang, M. Laleh, H. Wang, X. Zhang, J. Ma, W. Xu, M. Y. Tan, Advanced Science n/a (n/a), 2201162, https://doi.org/https://doi.org/10.1002/advs.202201162.

3. a) J. M. Shockley, C. R. So, M. J. Strom, R. C. Y. Auyeung, D. J. Horton, K. J. Wahl, ACS Applied Materials & Interfaces 2020, 12 (20), 23543, https://doi.org/10.1021/acsami.0c02256; b) F. A. Martin, C. Bataillon, J. Cousty, Corros Sci 2008, 50 (1), 84, https://doi.org/10.1016/j.corsci.2007.06.023; c) S. C. Hayden, C. Chisholm, S. L. Eichmann, R. Grudt, G. S. Frankel, B. Hanna, T. Headrick, K. L. Jungjohann, Nano Letters 2022, 22 (17), 7087, https://doi.org/10.1021/acs.nanolett.2c02122.

4. a) A. L. Weisenhorn, P. Maivald, H. J. Butt, P. K. Hansma, Phys Rev B 1992, 45 (19), 11226, /DOI 10.1103/PhysRevB.45.11226; b) J. H. Tao, M. H. Nielsen, J. J. De Yoreo, Curr Opin Colloid In 2018, 34, 74, https://doi.org/10.1016/j.cocis.2018.04.002; c) N. Birbilis, K. Meyer, B. C. Muddle, S. P. Lynch, Corros Sci 2009, 51 (8), 1569, https://doi.org/https://doi.org/10.1016/j.corsci.2009.05.009.

5. A. P. Abbott, G. Capper, K. J. McKenzie, A. Glidle, K. S. Ryder, Phys Chem Chem Phys 2006, 8 (36), 4214, https://doi.org/10.1039/b607763n.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3