Abstract
Abstract
Normal brain aging is accompanied by patterns of functional and structural change. Alzheimer's disease (AD), a representative neurodegenerative disease, has been linked to accelerated brain aging at respective age ranges. Here, we developed a deep learning-based brain age prediction model using fluorodeoxyglucose (FDG) PET and structural MRI and tested how the brain age gap relates to degenerative cognitive syndromes including mild cognitive impairment, AD, frontotemporal dementia, and Lewy body dementia. Occlusion analysis, performed to facilitate interpretation of the model, revealed that the model learns an age- and modality-specific pattern of brain aging. The elevated brain age gap in dementia cohorts was highly correlated with the cognitive impairment and AD biomarker. However, regions generating brain age gaps were different for each diagnosis group of which the AD continuum showed similar patterns to normal aging in the CU.
Publisher
Research Square Platform LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献