Lateral parabrachial FoxP2 neurons regulate respiratory responses to hypercapnia

Author:

Kaur Satvinder1ORCID,Nicole Lynch1,Sela Yaniv1,Lima Janayna1,Thomas Renner1,Bandaru Sathyajit2,Saper Clifford1ORCID

Affiliation:

1. Beth Israel Deaconess Medical Center

2. Beth Israel Department of Neurology, Program in Neuroscience and Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Ma-02215

Abstract

Abstract Although CGRP neurons in the external lateral parabrachial nucleus (PBelCGRP neurons) are critical for cortical arousal in response to hypercapnia, activating them has little effect on respiration. However, deletion of all Vglut2 expressing neurons in the PBel region suppresses both the respiratory and arousal response to high CO2. We identified a second population of non-CGRP neurons adjacent to the PBelCGRP group in the central lateral, lateral crescent and Kölliker-Fuse parabrachial subnuclei that are also activated by CO2 and project to the motor and premotor neurons that innvervate respiratory sites in the medulla and spinal cord. We hypothesize that these neurons may in part mediate the respiratory response to CO2 and that they may express the transcription factor, Fork head Box protein 2 (FoxP2), which has recently been found in this region. To test this, we examined the role of the PBFoxP2 neurons in respiration and arousal response to CO2, and found that they show cFos expression in response to CO2 exposure as well as increased intracellular calcium activity during spontaneous sleep-wake and exposure to CO2. We also found that optogenetically photo-activating PBFoxP2 neurons increases respiration and that photo-inhibition using archaerhodopsin T (ArchT) reduced the respiratory response to CO2 stimulation without preventing awakening. Our results indicate that PBFoxP2 neurons play an important role in the respiratory response to CO2 exposure during NREM sleep, and indicate that other pathways that also contribute to the response cannot compensate for the loss of the PBFoxP2 neurons. Our findings suggest that augmentation of the PBFoxP2 response to CO2 in patients with sleep apnea in combination with inhibition of the PBelCGRP neurons may avoid hypoventilation and minimize EEG arousals.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3