A Comprehensive Study on Capillary Surface Modifications for Electrophoretic Separations of Liposomes

Author:

Šimonová Alice1,Píplová Renata1,Balouch Martin2,Štěpánek František2,Křížek Tomáš3ORCID

Affiliation:

1. Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta

2. University of Chemistry and Technology Prague: Vysoka skola chemicko-technologicka v Praze

3. Charles University, Faculty of Science

Abstract

Abstract

Electroosmotic flow significantly impacts the resolution of separations in capillary electrophoresis and its modification is often necessary. Coating of the inner capillary surface either dynamically or permanently offers a way to alter the electroosmotic flow, potentially reducing the adsorption of analytes, in our case liposomes, to the capillary wall. At first, we measured fluorescently labeled liposomes in an uncoated capillary by capillary electrophoresis with laser-induced fluorescence detection. We used a special procedure of the electrophoretic experiment allowing us to observe the development of peak shape at the early stages of migration. We proved that the liposomes were adsorbed to the capillary wall, which led to a very quick and severe dispersion of their peak during their electromigration. For this reason, we used a commercially coated capillary with polyvinyl alcohol, where at the same separation conditions, we observed the peak of the liposome with a stable shape during the migration. However, this capillary is costly, thus four simple dynamic coating methods were tested for four polymers, namely Pluronic F-127, polyvinyl pyrrolidone K30, polyethylene glycol, and polydiallyldimethylammonium chloride. Among them, we chose a method where we flushed the capillary with a 10% solution of polyvinyl pyrrolidone K30 before the first measurement. In addition, in-house made permanent coating with linear polyacrylamide was investigated, which has led to effective suppression of the electroosmotic flow and stable liposome peak, not dispersed during its migration. Liposome separation using this coating fully confirmed that the studied liposomes are negatively charged and migrate in the anodic direction.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3