Affiliation:
1. Prosthodontic Department, Faculty of Dentistry, Alexandria University
2. Medical physiology Department, Faculty of Medicine, Alexandria University
3. Dental Public Health Department, Faculty of Dentistry, Alexandria University
Abstract
Abstract
Background: Although 3D printed photoinitiated resins are among the many materials utilized in prosthetic appliances today, biocompatibility for photocuring 3D printing materials for direct and long-term contacting with living body remain scarce. The purpose of this in vitro study was to evaluate the cell viability of human gingival fibroblasts after the exposure to two different 3D printed photoinitiated resins and compare it to the traditionally used heat polymerized acrylic resin for up to 7 days.Methods: This comparative in vitro study of sample size (n= 96), where the 3D printed resin disc samples (n= 64), were divided into two test groups, test group 1 (TG1) for NextDent Base resin (n= 32) and test group 2 (TG2) for Dental LT clear resin (n= 32), to be compared to Heat polymerized acrylic resin samples (Reference group (RG)) (n= 32). Human gingival fibroblasts were extracted from attached keratinized gingival tissues collected from healthy patient undergoing clinical crown lengthening procedure, cellular viability using MTT assay in response to TG1, TG2 and RG samples was assessed throughout four-time intervals (24, 48, 72 and 168 hours). The One-Way ANOVA test followed by Tukey’s post hoc test and Repeated Measures ANOVA test were used for statistical analyses, statistically significant different at P value ≤ 0.05Results: Throughout time intervals, there was a decrease in cell viability of all groups but with favorable cell viability which was more that 90% denoting non cytotoxicity. It was found to be significant among RG (P< 0.0001). The highest cell viability was found after 24 hours among all groups; however, the least viability was found after 48 hours among TG1 and RG, and among TG2 after 72 hours. After 168 hours, there was a non-statistical significant change in cell viability between groups (P= 0.526). there was significant increase in optical density for all groups throughout time intervals (P< 0.0001).Conclusion: Photoinitiated resins are comparable to traditionally used heat polymerized acrylic resin with equivalent cytotoxic effect for long term use. 3D printed photoinitiated resins are biocompatible and suggested for long term intraoral use.
Publisher
Research Square Platform LLC
Reference33 articles.
1. Biocompatibility of Dental Materials;St John KR;Dent Clin North Am,2007
2. In vitro evaluation of dental materials;Polyzois G;Clin Mater,1994
3. Biocompatibility of Photopolymers in 3D Printing. 3D Print Addit Manuf;Alifui-Segbaya F,2017
4. Principles of biocompatibility for dental practitioners;Wataha JC;J Prosthet Dent,2001
5. Biocompatibility of dental alloys used in dental fixed prosthodontics;Elshahawy W;Tanta Dent J,2014
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献