FOEH: Frequent Pattern Mining Performance Optimization over Large Transactional Data in Extended Hadoop MapReduce

Author:

S Guru Prasad M1,N Naveen Kumar H2,Shah Mohd Asif3,K Raju4,K Santhosh Kumar D5,S Chandrappa6

Affiliation:

1. Graphic Era (Deemed to be University)

2. Vidyavardhaka College of Engineering

3. Kabridahar University

4. NMAM Institute of Technology

5. Canara Engineering College

6. GSSS Institute of Engineering and Technology for Women

Abstract

Abstract Frequent item mining is a process wherein we extract or mine frequent itemsets from a given input dataset. Apriori algorithms and FP-growth algorithms are two types of common pattern mining algorithms. Traditional implementations of such frequent item mining algorithms tend to be inefficient when it comes to mining frequent item sets over large transactional datasets, owing to the fact that they consume a greater amount of time in performing the same. In order to tackle the issues mentioned, large transaction datasets using the extended Hadoop MapReduce Framework are considered. On the same, a novel distributed, parallel processing, frequent item mining algorithm is integrated. The analysis of the performance of the implemented algorithm proves that the performance of frequent item analysis in relation to data uploading time, HDFS disk utilization, and data processing time has improved drastically.

Publisher

Research Square Platform LLC

Reference43 articles.

1. A survey of big data research;Fang H;IEEE Netw.,2015

2. Big Data Reduction Methods: A Survey;Rehman M;Data Sci. Eng.,2016

3. Big Privacy: Challenges and Opportunities of Privacy Study in the Age of Big Data;Yu SHUI;IEEE Access.,2016

4. Health Twitter Big Bata Management with Hadoop Framework;Cunha J;Elsevier,2015

5. Chen, H., Lin, T.Y., Zhang, Z., Zhong, J.: “Parallel mining frequent patterns over big transactional data in extended mapreduce,” IEEE International Conference on Granular Computing, vol. 2, no. 6, pp. 43–48, (2013)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3