MicroRNA-15a-5p suppresses hypoxia-induced tumor growth and chemoresistance in bladder cancer by binding to eIF5A2

Author:

Yang Jinsong1,Xiang Haoyi2,Cheng Mengjing3,Jiang Xue1,Chen Ying1,Zheng Lingyan1,Yan Senxiang1,Zhang Shufen4,Chen Wei4ORCID,Chen Dajin1

Affiliation:

1. Zhejiang University School of Medicine First Affiliated Hospital

2. Zhejiang University School of Medicine

3. Ningbo Hospital of Ningbo University: Ningbo City First Hospital

4. Tongde Hospital Of Zhejiang Province

Abstract

Abstract Background In various malignant tumors (including bladder cancer) poor prognosis is associated with hypoxia and therapeutic resistance. Evidence indicates that in bladder cancer, microRNAs (miRNAs) have vital functions in acquired drug resistance. However, the involvement of miRNAs in hypoxia-mediated bladder cancer doxorubicin (Dox) resistance is unknown. Herein, we showed that hypoxia and Dox treatment downregulated miR-15a-5p expression. Methods and Results Using UM-UC-3 and J82 bladder cancer cell lines, and in vivo mouse models of bladder cancer, we confirmed that miR-15a-5p arrests tumor cell growth and Dox resistance in vitro and in vivo. Furthermore, we determined the interaction between miR-15a-5p and eukaryotic translation initiation factor 5A-2 (eIF5A2) using dual luciferase reporters and quantitative real-time reverse transcription polymerase chain reaction assays. We also showed that an miR-15a-5p agomir repressed EIF5A2 expression in bladder cancer cells, thereby inhibiting the epithelial-mesenchymal transition (EMT) induced by Dox or hypoxia. Moreover, ectopic expression of miR-15a-5p abrogated eIF5A2-mediated Dox resistance in bladder cancer cells. Collectively, these data indicated that hypoxia promotes tumor growth and chemoresistance through the HIF-1α/miR-15a-5p/eIFTA2/EMT pathway. Conclusion This new finding not only has implications for improving our understanding of the Dox resistance process during bladder cancer progression, but also indicated that the miR-15a-5p agomir is a promising tool to prevent Dox resistance in patients with bladder cancer.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3