High efficiency sonochemical degradation of bisphenol A: a synergistic dual-frequency ultrasound approach

Author:

Symes Mark1ORCID,Fletcher Shaun1,Yusuf Lukman1,Ertekin Zeliha1

Affiliation:

1. University of Glasgow

Abstract

Abstract

The persistence of bisphenol A in the environment poses significant ecological hazards. Traditional treatment methods often fall short in removing micropollutants such as bisphenol A from wastewater. The use of ultrasound in water treatment has the potential to induce powerful oxidative degradation of micropollutants while dispensing with the need for chemical intervention. Herein, we show a novel approach for the sonochemical degradation of bisphenol A using dual frequency ultrasound. The synergistic effects of using two distinct ultrasonic frequencies (20 kHz, with the addition of either 37 kHz or 80 kHz) were investigated in the context of bisphenol A removal and mineralisation. The method was shown to substantially increase the rate of degradation compared to single frequency treatment, achieving a 94.2% removal of bisphenol A under optimised conditions. The extent of mineralisation of the target pollutant and the absence of the need for chemical additives demonstrates the effectiveness of the method as a green alternative for water treatment.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3