Filbertone-Induced Nrf2 Activation Ameliorates Neuronal Damage via Increasing BDNF Expression

Author:

Gong Jeong Heon1,Kim Chu-Sook2,Park Jeongmin1,Kang So Eon3,Jang Yumi3,Kim Min-Seon4,Chung Hun Taeg1,Joe Yeonsoo1,Yu Rina3

Affiliation:

1. Daegu Haany University

2. Ulsan National Institute of Science and Technology

3. University of Ulsan

4. Asan Medical Center, University of Ulsan College of Medicine

Abstract

Abstract Neurotrophic factors are endogenous proteins that promote the survival of various neuronal cells. Increasing evidence has suggested a key role for brain-derived neurotrophic factor (BDNF) in the dopaminergic neurotoxicity associated with Parkinson’s Disease (PD). This study explores the therapeutic potential of filbertone, a bioactive compound found in hazelnuts, in neurodegeneration, focusing on its effects on neurotrophic factors and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. In our study, filbertone markedly elevated the expression of neurotrophic factors, including Brain-Derived Neurotrophic Factor (BDNF), Glial cell line-Derived Neurotrophic Factor (GDNF), and Nerve Growth Factor (NGF), in human neuroblastoma SH-SY5Y cells, mouse astrocyte C8-D1A cells, and mouse hypothalamus mHypoE-N1 cells. Moreover, filbertone effectively countered neuroinflammation and reversed the decline in neurotrophic factors and Nrf2 activation induced by a high-fat diet (HFD) in neurodegeneration models. The neuroprotective effects of filbertone were further validated in models of neurotoxicity induced by palmitic acid (PA) and the neurotoxin MPTP/MPP+, where it was observed to counteract PA and MPTP/MPP+-induced decreases in cell viability and neuroinflammation, primarily through the activation of Nrf2 and the subsequent upregulation of BDNF and heme oxygenase-1 expression. Nrf2 deficiency negated the neuroprotective effects of filbertone in MPTP-treated mice. Consequently, our finding suggests that filbertone is a novel therapeutic agent for neurodegenerative diseases, enhancing neuronal resilience through the Nrf2 signaling pathway and upregulation of neurotrophic factors.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3