Operando spin observation elucidating performance-improvement mechanisms during operation of Ruddlesden–Popper Sn-based perovskite solar cells

Author:

Marumoto Kazuhiro1ORCID,Chen Yizhou1,Yamaguchi Seira1ORCID,Sato Atsushi1,Xue Dong1

Affiliation:

1. University of Tsukuba

Abstract

Abstract

Sn-based perovskite solar cells (PSCs) have attracted attention because of their low environmental impact. Unfortunately, the readily occurring oxidation of Sn2+ inhibits further improvement of their efficiency and stability. Ruddlesden–Popper (RP) Sn-based perovskites are considered promising candidates as absorbers that improve the performance and stability of Sn-based PSCs. However, microscopic understanding of performance-enhancing mechanisms remains insufficient. For this study, electron spin resonance (ESR) spectroscopy measurements were taken of RP Sn-based PSCs with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole-transport layers and (BA0.5PEA0.5)2FA3Sn4I13 perovskite layers to clarify the space-charge region formation mechanism at the PEDOT:PSS/(BA0.5PEA0.5)2FA3Sn4I13 interface. Results indicated electron-barrier formation in the (BA0.5PEA0.5)2FA3Sn4I13 layer near the PEDOT:PSS layer. Moreover, the electron barrier was found to be enhanced during device operation. The enhanced interface band bending reduces interface recombination and thereby improves the device performance. These findings might provide important progress in practical applications of PSCs and might advance the realization of a carbon-neutral society.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3