In Situ Carboxyl Functionalization of Hybrid Organosilica Reverse Osmosis Membranes for Water Desalination

Author:

Xu Rong1,Cheng Shixin1,Xu Cheng1,Qi Lv1,Zhong Jing1,Liu Gongping2,Huang Meina3,Wasnik Priyanka4,Jiang Qinglong4

Affiliation:

1. Changzhou University

2. Nanjing Tech University

3. Advanced Materials Division, Engineered Multifunctional Composites (EMC) Nanotech LLC

4. University of Arkansas

Abstract

Abstract A new strategy is proposed to tune the surface and structural properties of hybrid organosilica membranes. It involves an in situ carboxyl functionalization via the thiol-ene click reaction between the double bonds of bis(triethoxysilyl)ethylene and mercaptosuccinic acid. Water sorption measurements and quantum chemical calculations confirm that the introduction of carboxyl functionalities into the organosilica networks leads to a more compact pore structure and an improved affinity for water molecules. Compared to the original ethenylene-bridged organosilica membranes, the in situ carboxyl functionalization doubles the membrane permeability without any drop in water/salt selectivity in reverse osmosis (RO). Furthermore, the carboxyl functionalized organosilica membrane demonstrates high durability during a continuous RO desalination process of 200 h, showing excellent prospects as a high efficiency and robust molecular separation membrane for environmental and industrial applications.

Publisher

Research Square Platform LLC

Reference35 articles.

1. Castricum HL, Sah A, Kreiter R, Blank DHA, Vente JF, ten Elshof (2008) J. E. Hydrothermally stable molecular separation membranes from organically linked silica. J. Mater. Chem. 18, 2150–2158

2. Development of robust organosilica membranes for reverse osmosis;Xu R;Langmuir,2011

3. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability;Kanezashi M;J Am Chem Soc,2009

4. Influence of monomer connectivity, network flexibility, and hydrophobicity on the hydrothermal stability of organosilicas;Dral AP;Langmuir,2017

5. Periodic mesoporous organosilicas: from simple to complex bridges; a comprehensive overview of functions, morphologies and applications;Voort PVD;J Chem Soc Rev,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3