Clustering method for generic analysis of histological fibrosis staining – an open-source tool

Author:

Remes Anca1,Noormalal Marie1,Schmiedel Nesrin1,Frey Norbert2,Frank Derk1,Müller Oliver J.1,Graf Markus3

Affiliation:

1. University of Kiel and University Hospital Schleswig-Holstein, Partner Site Hamburg/Kiel/Lübeck

2. University Hospital Heidelberg

3. Heilbronn University of Applied Sciences

Abstract

Abstract Pathological remodeling of the extracellular matrix is a hallmark of cardiovascular disease, causing cardiac dysfunction by reducing ejection fraction and impaired electrical conductance, leading to arrythmias. Hence, accurate quantification of fibrosis deposition in histological sections is of extreme importance for preclinical and clinical studies. Current automatic tools do not perform well under variant conditions. Moreover, users do not have the option to evaluate data from staining methods of their choice according to their purpose. To overcome these challenges, we underline a novel machine learning-based tool (FibroSoft) and we show its feasibility in a model of cardiac hypertrophy and heart failure in mice. Our results demonstrate that FibroSoft can identify fibrosis in diseased myocardium and the obtained results are user-independent. In addition, the results acquired using our software strongly correlate to those obtained by Western blot analysis of collagen 1 expression. Additionally, we could show that this method can be used for Masson’s Trichrome and Picosirius Red stained histological images. The evaluation of our method also indicates that it can be used for any particular histology segmentation and quantification. In conclusion, our approach provides a powerful example of the feasibility of machine learning strategies to enable automatic analysis of histological images.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3