1. A, G., Wahr, J., & Zhong, S. (2013). Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192(2), 557–572. ://doi.org/10.1093/gji/ggs030
2. Agarwal, V, Akyilmaz, O., Shum, C. K., Feng, W., Yang, T.-Y., Forootan, E., Syed, Tajdarul H., & Uz, M. (n.d.). Effective Machine Learning-Aided Downscaling of Satellite Gravimetry Estimated Groundwater Level in Central Valley, California. Journal of Hydrology.
3. Agarwal, Vibhor. (2021). Machine Learning Applications for Downscaling Groundwater Storage Changes Integrating Satellite Gravimetry And Other Observations. The Ohip State University.
4. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. ://doi.org/10.1023/A:1010933404324
5. Cao, G., & Zheng, C. (2016). Signals of short-term climatic periodicities detected in the groundwater of North China Plain. Hydrological Processes, 30(4), 515–533. ://doi.org/10.1002/HYP.10631