A New enhanced Fuzzy Support Vector Machine with Pinball Loss

Author:

Verma Ram Nayan1,Srivast Rakesh2,Subbarao Naidu1,Singh Gajendra Pratap1

Affiliation:

1. Jawaharlal Nehru University

2. Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India

Abstract

Abstract The fuzzy support vector machine (FSVM) assigns each sample a fuzzy membership value based on its relevance, making it less sensitive to noise or outliers in the data. Although FSVM has had some success in avoiding the negative effects of noise, it uses hinge loss, which maximizes the shortest distance between two classes and is ineffective in dealing with feature noise near the decision boundary. Furthermore, whereas FSVM concentrates on misclassification errors, it neglects to consider the critical within-class scatter minimization. We present a Fuzzy support vector machine with pinball loss (FPin-SVM), which is a fuzzy extension of a reformulation of a recently proposed support vector machine with pinball loss (Pin-SVM) with several significant improvements, to improve the performance of FSVM. First, because we used the squared L2- norm of errors variables instead of the L1 norm, our FPin-SVM is a strongly convex minimization problem; second, to speed up the training procedure, solutions of the proposed FPin-SVM, as an unconstrained minimization problem, are obtained using the functional iterative and Newton methods. Third, it is proposed to solve the minimization problem directly in primal. Unlike FSVM and Pin-SVM, our FPin-SVM does not require a toolbox for optimization. We dig deeper into the features of FPin-SVM, such as noise insensitivity and within-class scatter minimization. We conducted experiments on synthetic and real-world datasets with various sounds to validate the usefulness of the suggested approach. Compared to the SVM, FSVM, and Pin-SVM, the presented approaches demonstrate equivalent or superior generalization performance in less training time.

Publisher

Research Square Platform LLC

Reference32 articles.

1. Abe S (2005) Support Vector Machines for Pattern Classification. Springer-Verlag, Berlin, Germany

2. A new approach for training Lagrangian twin support vector machine via unconstrained convex minimization;Balasundaram S;Appl Intell,2017

3. On proximal bilateral-weighted fuzzy support vector machine classifiers;Balasundaram S;Int J Adv Intell Paradigms,2013

4. Support vector classification with input data uncertainty;Bi J;Adv Neural Inf Process Syst,2005

5. Support-vector networks;Cortes C;Mach Learn,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3