Affiliation:
1. Hubei Academy of Agricultural Sciences
2. Yangtze University
Abstract
Abstract
The ovaries of high-yield laying hens exhibited signs of aging beyond 400 days of age, subsequently resulting in a decline in both egg production and egg quality. Oxidative stress, characterized by an increase in the production of reactive oxygen species (ROS), stands as one of the principal processes contributing to ovarian aging. Elevated ROS levels are implicated in the induction of apoptosis in granulosa cells (GCs), provoking mitochondrial impairment, and diminishing the capacity of the antioxidant defense system. This investigation stratified laying hens into two distinct groups, predicated upon their egg production levels: high-yield hens (HH) and low-yield hens (LL). The study focused on evaluating oxidative stress markers and identifying differentially expressed genes between these two groups. The findings revealed that the low-yield group exhibited follicular atresia, mitochondrial disruptions, and apoptotic occurrences in ovarian GCs. Notably, ROS levels, Malondialdehyde (MDA) concentrations, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations in ovarian tissue and follicular GCs were substantially higher in the HH group. Furthermore, the RNA-sequencing results unveiled differential expression of the LECT2 gene between the HH and LL groups. Consequently, an overexpression vector for the LECT2 gene was successfully constructed and introduced into GCs. The quantitative polymerase chain reaction (QPCR) analysis exhibited significant downregulation (p < 0.01) of key apoptotic genes such as Caspase-3 and C-myc and significant upregulation (p < 0.01) of BCL2 following the overexpression of the LECT2 gene in GCs. In conclusion, oxidative stress emerges as a pivotal factor influencing the laying traits of both high and low-yield laying hens. The accumulation of reactive oxygen species (ROS) within the ovaries precipitates apoptosis in GCs, subsequently leading to follicular atresia and a reduction in egg production. Additionally, the LECT2 gene assumes a critical role in promoting the proliferation and differentiation of follicular GCs, thus playing a significant role in the regulation of follicular development.
Publisher
Research Square Platform LLC