Fractional solution of the puff model in three dimensional for pollutant dispersion in the atmosphere

Author:

Essa Khaled1,Marrouf Ayman A.1,Etman Soad1,El-Otaify Maha1

Affiliation:

1. Egyptian Atomic Energy Authority

Abstract

Abstract An analytical solution of the three-dimensional fractional time-dependent advection-diffusion equation (ADE) in the puff model is solved. A simple model of the fractional differential equation for an instantaneous emission in non-homogeneous and time-dependent meteorological conditions has been studied. A Generalized Integral Laplace Transform Technique (GILTT) has been used to solve this problem. A comparison between the proposed model, previous work, and observed concentration from the experiment of Copenhagen is made.

Publisher

Research Square Platform LLC

Reference7 articles.

1. K. S. M. Essa, A. S. Shalaby, M. A. E. Ibrahim, A. M. Mosallem, Analytical solutions of the advection diffusion equation with variable vertical eddy diffusivity and wind speed using hankel transform, Pure Appl. Geophys. 177(9), 4545–4557, (2020). https://doi.org/10.1007/s00024-020-02496-y A.P. van Ulden, A surface-layer similarity model for the dispersion of a skewed passive puff near the ground, Atmospheric Environment. Part A. General Topics, 26(4), (1992). https://doi.org/10.1016/0960-1686(92)90180-S. T. Tirabassi, U. Rizza, A practical model for the dispersion of skewed puffs, Journal of Applied Meteorology 34 (1995). https://doi.org/10.1175/1520-0450(1995)034<0989:APMFTD>2.0.CO;2 U. R. T. Tirabassi, Boundary layer parameterization for a non-gaussian puff model, Journal of Applied Meteorology, 36, 1031–1037 (1997). https://doi.org/10.1175/1520-0450(1997)036<1031:BLPFAN>2.0.CO;2 L. L. Pereira, C. P. da Costa, M. T. Vilhena, T. Tirabassi, Puff models for simulation of fugitive hazardous emissions in atmosphere, Journal of Environmental Protection, 2(2) (2011). http://dx.doi.org/10.4236/jep.2011.22017 M. T. Vilhena, U. Rizza, G. A. Degrazia, C. Mangia, D. M. Moreira, T. Tirabassi, An analytical air pollution model: Development and evaluation, Contributions to Atmospheric Physics, 71(3), 315–320, (1998). D. M. MOREIRA, M. T. VILHENA, T. TIRABASSI, C. COSTA, B. BODMANN, Simulation of pollutant dispersion in the atmosphere by the laplace transform: The ADMM Approach, Water Air Soil Pollut177, 411439(2006).https://doi.org/10.1007/s11270-006-9182-2 T. Tirabassi, D. Moreira, T. Vilhena, C. Costa, Comparison between non-gaussian puff model and a model based on a time-dependent solution of advection-diffusion equation, Journal of Environmental Protection 1(2), 172–178, (2010). http://dx.doi.org/10.4236/jep.2010.12021 S. Wortmann, M.T. Vilhena, D.M. Moreira, D. Buske, A new analytical approach to simulate the pollutant dispersion in the PBL, Atmospheric Environment, 39(12), 2171–2178, (2005). https://doi.org/10.1016/j.atmosenv.2005.01.003

2. D. M. Moreira, M. T. Vilhena, T. Tirabassi, D. Buske, R. Cotta, Near-source atmospheric pollutant dispersion using the new GILTT method, Atmospheric Environment, 39(34), 6289–6294. (2005). https://doi.org/10.1016/j.atmosenv.2005.07.008 D. M. Moreira, M. T. Vilhena, T. Tirabassi, D. Buske, R. Cotta, the state-of-art of the GILTT method to simulate pollutant dispersion in the atmosphere, Atmospheric Research, 92(1), 1–17 (2009). https://doi.org/10.1016/j.atmosres.2008.07.004 D. Buske, M. Vilhena, T. Tirabassi, B. Bodmann, Air pollution steady-state advection-diffusion equation: The general three-dimensional solution, Journal of Environmental Protection, 3(9A), 1124–1134, (2012). http://dx.doi.org/10.4236/jep.2012.329131 E. da Silva, M. T. Vilhena, T. Tirabassi, D. Buske, Solution of the puff model for pollutant dispersion in the atmospheric boundary layer by an analytical approach, Proceeding Series of the Brazilian Society of Applied and Computational Mathematics, 3(1), 010365-(1–7)(2015). https://doi.org/10.5540/03.2015.003.01.0365 A. Marrouf, Maha S. El-Otaify, Adel S. Mohamed, Galal Ismail, Khaled S. M. Essa, Analytical solution of one dimension time dependent advection- diffusion equation, Journal of Ecology of Health and Environment 4(2), 67–73, (2016). http://dx.doi.org/10.18576/jehe/040203 A. A. Marrouf, K. S. M. Essa, M. S. El-Otaify, A. S. Mohamed, G. Ismail, The influence of eddy diffusivity variation on the atmospheric diffusion equation, Open Journal of Air Pollution 4(3), 109–118, (2015). http://dx.doi.org/10.4236/ojap.2015.43011 K. S. M. Essa, A. A. Marrouf, M. S. El-Otaify, A. S. Mohamed, G. Ismail, New technique for solving the advection-diffusion equation in three dimensions using LaPlace and Fourier transforms, Journal of Applied and Computational Mathematics 4(6), 1–4, (2015). http://dx.doi.org/10.4172/2168-9679.1000272 A. A. Marrouf, A. S. Mohamed, G. Ismail, K. S. M. Essa, An analytical solution of two dimensional atmospheric diffusion equation in a finite boundary layer, International Journal of Advanced Research (IJAR) 1(5), 356–365, (2013).

3. P. Zannetti, Air PollutionModeling:Theories, Computational Methods and Available Software, Springer,Southampton, U.K., (1990). https://doi.org/10.1007/978-1-4757-4465-1

4. Modeling and parameterization of near-source diffusion in weak winds;Arya P;Journal of Applied Meteorology and Climatology,1995

5. I. Podlubny, Chap. 2 - Fractional Derivatives and Integrals, Mathematics in Science and Engineering, Elsevier, 198, 41–119, (1999). https://doi.org/10.1016/S0076-5392(99)80021-6 S. E. Gryning, E. Lyck, Atmospheric Dispersion from Elevated Sources in an Urban Area: Comparison between Tracer Experiments and Model Calculations, Journal of Applied Meteorology and Climatology, 23(4), 651–660, (1984). https://doi.org/10.1175/1520-0450(1984)023%3C0651:ADFESI%3E2.0.CO;2 S. E. Gryning, A. A. M. Holtslag, J. Irwin, B. Siversten, applied dispersion modeling based on meteorological scaling parameters, Atmospheric Environment (1967), 21(1), 79–89, (1987). https://doi.org/10.1016/0004-6981(87)90273-3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3