Water-Dissociation Catalysis Near the Reversible Limit in Bipolar Membrane Electrolyzers

Author:

Boettcher Shannon1ORCID,Chen Lihaokun1ORCID,Sarma Prasad2,Traenkle Olivia1,Simons Casey2,Wells Kacie3,Spontak Richard3ORCID,

Affiliation:

1. University of Oregon

2. University of Oregon, Chemistry

3. North Carolina State University

Abstract

Abstract The voltage penalty encountered when driving water dissociation (WD) at a high current density represents a major obstacle in the commercialization of existing bipolar-membrane (BPM) technology for energy devices. Here we show that three materials descriptors, including the electrical conductivity, microscopic surface area, and (nominal) surface-hydroxyl coverage, effectively control the kinetics of WD in BPMs. Using these descriptors and optimal mass loading, we design new earth-abundant WD catalysts based on nanoparticle SnO2 synthesized at low temperature that exhibit exceptional performance by driving the WD reaction in a BPM electrolyzer at the remarkably low WD overvoltage (ηwd) of 100 ± 20 mV at 1.0 A cm−2. We demonstrate this new catalyst works equivalently well with hydrocarbon proton-exchange layers as it does with fluorocarbon-based Nafion, thus providing new pathways to commercializing advanced bipolar membranes for a broad array of electrolysis, fuel-cell, and electrodialysis applications.

Publisher

Research Square Platform LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3