Unraveling the Dehydration Temperature Dependent of Mn 2+ -exchanged Zeolite Y (FAU, Si/Al = 1.67) through Crystallographic Study

Author:

Nath Sayantika1,Kim Hu Sik1,Lim Hyeon Seung1,Choo Hyeonuk1,Battsetseg Bayarsaikhan1,Lim Woo Taik1

Affiliation:

1. Andong National University

Abstract

Abstract

To study the behavior of Mn2+ ions and water molecules in Mn2+-exchanged zeolite Y (Si/Al = 1.67) at different temperatures during dehydration, the single crystals of Mn2+-exchanged zeolite Y were prepared by batch method at room temperature. Five single crystals of Mn2+-exchanged zeolite Y were dehydrated at 297 K (crystal 1), 523 K (crystal 2), 573 K (crystal 3), 623 K (crystal 4), and 673 K (crystal 5), respectively, under dynamic vacuum for 48 h. Their crystal structures were completely determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group Fdm at 100(1) K. They were refined to the final error indices R1/wR2 = 0.0594/0.1615, 0.0450/0.1229, 0.0445/0.1108, 0.0447/0.1145, and 0.0418/0.1084 (for Fo > 4σ(Fo)) for crystals 1, 2, 3, 4, and 5, respectively. In all five crystals, about 36 Mn2+ ions occupy five crystallographic sites. Mn2+ ion was energetically preferred and the first to be filled at site I in all structures. The Mn2+ ions migrated from one site (sites I’ or II’) to another available site (sites I or II) to better satisfy their coordination requirements upon dehydration. Finally, in the completely dehydrated crystal 5, 36 Mn2+ ions occupy the sites I, I’, II’, IIa, and IIb with the fractional occupancies 15, 2, 2, 12, and 5, respectively. All water molecules associated with Mn2+ ions in the incompletely dehydrated crystals 1 ~ 4 were located in the sodalite cavities. In the structure of crystal 1, about 10.5 water molecules were found per unit cell, each coordinating to Mn2+ ions at Mn(1’b). These water molecules formed clusters as [Mn4(H2O)4]8+. Only 5, 3, and 2 water molecules were found in the structures of crystals 2 ~ 4, respectively, with increasing temperature. Each of these water molecules was bonded to one Mn2+ ion at Mn(2’), forming [MnH2O]2+. The unit cell constant of the zeolite framework decreased, as the number of water molecules decreased with the increasing dehydration temperature.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3