Affiliation:
1. University of Manitoba
2. CINDEFI, CONICET-CCT La Plata, Universidad Nacional de la Plata
3. CINDEFI-CONICET, CCT La Plata, Facultad de Ciencias Exactas, UNLP
Abstract
Abstract
The cell envelope of the Gram-negative Burkholderia cepacia complex (Bcc) presents unique restrictions to antibiotic penetration. As a consequence, Bcc species are notorious for causing recalcitrant multidrug-resistant infections in immunocompromised individuals, such as those living with cystic fibrosis. To systematically identify cell envelope-associated resistance and susceptibility determinants at the genome level, we constructed a high-density, randomly-barcoded transposon mutant library in the clinical isolate B. cenocepacia K56-2 and exposed it to a panel of more than twenty cell envelope-targeting antibiotics. By quantifying relative mutant fitness with BarSeq, followed by validation with CRISPR-interference, we profiled over a hundred new functional associations and identified novel mediators of antibiotic susceptibility in the Bcc cell envelope. We revealed new connections between β-lactam susceptibility, peptidoglycan synthesis, and blockages in undecaprenyl phosphate metabolism, which highlight a vulnerability in sharing this lipid intermediate. We then show that the clinically relevant synergy of the β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is primarily mediated by inhibition of the PenB carbapenemase. Importantly, we found that avibactam more strongly potentiates the activity of aztreonam and meropenem than ceftazidime in a panel of Bcc clinical isolates. Finally, we characterize for first time in the Bcc the iron and receptor-dependent activity of the novel siderophore-cephalosporin antibiotic, cefiderocol. Overall, our work has implications for antibiotic target prioritization, and for using additional combinations of β-lactam/β-lactamase inhibitors that can extend the utility of our current clinical arsenal of antibacterial therapies.
Publisher
Research Square Platform LLC