Federated Learning and Differential Privacy for Medical Image Analysis

Author:

Adnan Mohammed1,Kalra Shivam1,Cresswell Jesse C.2,Taylor Graham W.3,Tizhoosh Hamid1

Affiliation:

1. University of Waterloo

2. Layer 6 AI

3. University of Guelph

Abstract

Abstract The artificial intelligence revolution has been spurred forward by the availability of large-scale datasets. In contrast, the paucity of large-scale medical datasets hinders the application of machine learning in healthcare. The lack of publicly available multi-centric and diverse datasets mainly stems from confidentiality and privacy concerns around sharing medical data. To demonstrate a feasible path forward in medical image imaging, we conduct a case study of applying a differentially private federated learning framework for analysis of histopathology images, the largest and perhaps most complex medical images. We study the effects of IID and non-IID distributions along with the number of healthcare providers, i.e., hospitals and clinics, and the individual dataset sizes, using The Cancer Genome Atlas (TCGA) dataset, a public repository, to simulate a distributed environment. We empirically compare the performance of private, distributed training to conventional training and demonstrate that distributed training can achieve similar performance with strong privacy guarantees. We also study the effect of different source domains for histopathology images by evaluating the performance using external validation. Our work indicates that differentially private federated learning is a viable and reliable framework for the collaborative development of machine learning models in medical image analysis.

Publisher

Research Square Platform LLC

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Personalized Federated Graph Learning on Non-IID Electronic Health Records;IEEE Transactions on Neural Networks and Learning Systems;2024-09

2. A Survey of Federated Learning for mmWave Massive MIMO;IEEE Internet of Things Journal;2024-08-15

3. OASIS: Offsetting Active Reconstruction Attacks in Federated Learning;2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS);2024-07-23

4. A Differentially Private Blockchain-Based Approach for Vertical Federated Learning;2024 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS);2024-07-15

5. SimSAM: Zero-Shot Medical Image Segmentation via Simulated Interaction;2024 IEEE International Symposium on Biomedical Imaging (ISBI);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3