Computational analysis and experimental verification of donor-acceptor behaviour of berberine, and its co-oligomers and co-polymers with ethylenedıoxythıophene

Author:

Rajapakse R. M. Gamini1,Horrocks Benjamin R.2,Gunarathna H. M. N. P.1,Malikaramage A. U.1,Egodawele M. G. S. A. M. E. W. D. D. K1,Herath W. H. M. R. N. K.1,Sandakelum Lahiru1,Bandara V. M. Y. S. U.1,Bowaththa W. V. N. S.1,Jayasinghe J. M. Susanthi1,Seneviratne V. N.1,Ranatunga Udayana1,Perera L. L. K.1,Dassanayake S. M.3,Udawatte Chandana P.4

Affiliation:

1. University of Peradeniya

2. Newcastle University

3. University of Moratuwa

4. Sabaragamuwa University of Sri Lanka

Abstract

Abstract The donor-acceptor (D-A) type of conjugated polymers has emerged as the paradigm of the third generation of electronically conducting polymers demonstrating improved infrared activity and intrinsic electronic conductivity. Judicious selection of donor (D) and acceptor (A) monomers for copolymerization can further fine-tune these properties. Notably, for such refinement, natural compounds provide many conjugated molecules with various functional groups. Berberine cation (Ber+) found in Coscinium fenestratum has extensive conjugation and contains both an electron deficient isoquinolium A moiety and electron-rich D-type methylenedioxy and methoxy groups. The incorporation of natural products in electronic materials is a novel area of research which opens a wide scope for future electronic and optoelectronic devices. Investigation of their fundamental properties via computer simulations is therefore important. In this study, quantum chemical calculations are performed using density functional theory (DFT) to investigate the electronic and optical properties of oligomers of Ber+ and 3,4-ethylenedioxythiophene (EDOT) and to explore the possibilities for homo-polymerization of Ber+ and its copolymerization with EDOT. It has been revealed that homo-polymerization is not favoured but copolymerization with EDOT is possible. As such, Ber+ was copolymerized with EDOT and the copolymers formed by electro-polymerization are extensively characterised and the D-A behaviour of the copolymers verified. Furthermore, the theoretical predictions have been compared with the experimental data.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3