Medical Cyberspace Subliminal Affective Collective Consciousness: Machine Learning Discriminates Back Pain vs Hip/Knee Osteoarthritis Web Pages Emotional Fingerprints

Author:

Caldo Davide1,Bologna Silvia2,Conte Luana3,Amin Muhammad Saad4,Anselma Luca4,Basile Valerio4,Murad Hossain4,Mazzei Alessandro4,Heritier Paolo4,Ferracini Riccardo5,Kon Elizaveta6,De Nunzio Giorgio3

Affiliation:

1. Gradenigo Humanitas Hospital

2. Imparamare ong, Italy

3. Unisalento

4. University of Turin

5. University of Genoa

6. Humanitas Research Hospital

Abstract

Abstract Background - Dynamic interplay between the patients and digital information subliminal affective content may play a peculiar role in emergence of musculoskeletal degenerative chronic pain in modern society, within the combined theoretical frames of somatic marker theory and complex adaptive system theory, and cyberspace algorithm mechanism. This field of research lacks systematic investigation so far. Goal - Digital information affective content pertaining back pain was confronted with the one related to hip/knee osteoarthritis Methods - Top English internet pages related to the topics of interest were automatically selected by relevance/popularity, downloaded, then submitted to sentiment analysis; Machine Learning algorithms classified the output. Statistical association and predictivity were determined. Results - ML showed high discrimination accuracy predicting the page topic from the emotional fingerprint. The emotion Disgust emerged as a singular discriminating factor in the case study Discussion - The potential effects of disgust presence in different chronic degenerative conditions on internet texts is discussed. The potential role for a “Digital Affective Collective Consciousness” system is also discussed, and its potential contribution to psychosocial pathogenesis, maintenance and treatment outcome when biopsychosocial diseases are concerned, with implication for ethics and digital healthcare information policy

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3