Landslide hazard assessment of an urban agglomeration in central Guizhou Province based on an information value method and machine learning algorithm

Author:

Junhua Luo1ORCID,Zulun Zhao1,Wei Li1,Liang Huang1,Weiquan Zhao1

Affiliation:

1. gui zhou ke xue yuan: Guizhou Academy of Sciences

Abstract

Abstract

The urban agglomeration in central Guizhou is located in a crustal deformation area caused by tectonic uplift between the Mesozoic orogenic belt of East Asia and the Alpine-Tethys Cenozoic orogenic belt, with high mountains, steep slopes, fractured rock masses and a fragile ecological environment; this area is the most affected by landslides in Guizhou Province, China. From 2011 to 2023, there were a total of 648 medium and large landslide disasters, resulting in 143 deaths and a direct economic loss of 1.191 billion yuan. Therefore, this study selected 12 indicators from the topography, geological structure, and external inducing factors, and conducted factor collinearity analysis using the variance expansion coefficient to construct a landslide hazard assessment index system. The statistical analysis model was combined with a variety of machine learning models, and the selection of negative sample points was restricted in various ways to improve training data accuracy and enable machine learning model predictions with sufficiently supervised prerequisites. The accuracy of the model was validated by ROC curve analysis. The AUC values of the SVM, DNN, and bagging models were all greater than 0.85, indicating that the results were credible. However, the overall accuracy was SVM > DNN > Bagging; that is, SVM was more suitable for landslide hazard assessment of the urban agglomeration in central Guizhou. Finally, field surveys were used to validate multiple sites with historical landslides in extremely high-hazard areas and analyse their development characteristics. The evaluation results can provide strong guidance for engineering design, construction and disaster prevention decision-making of urban agglomeration in central Guizhou.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3