Analysis of protein-protein interaction and weighted co-expression networks revealed key modules and genes in multiple tissues of Agave sisalana

Author:

de Carvalho Lucas Miguel1ORCID,Silva Nicholas Vinícius2,de Abreu Luís Guilherme F.2,Marone Marina Püpke2,Cardelli Alexandra Russolo2,Raya Fabio Trigo2,Araújo Guido3,Carazzolle Marcelo Falsarella1,Pereira Gonçalo Amarante Guimarães2

Affiliation:

1. Center for Computing in Engineering and Sciences, State University of Campinas, Campinas, São Paulo, 13083-861, Brazil.

2. Laboratory of Genomics and bioEnergy (LGE), Department of Genetics, Evolution, Microbiology, and Immunology, Institute of Biology, State University of Campinas, Campinas, SP, 13083-862, Brazil

3. Institute of Computing, UNICAMP, Campinas, São Paulo, 13083-852, Brazil.

Abstract

Abstract Agave plants are well-known for their drought resilience and commercial applications. Among them, Agave sisalana (sisal) is the species most used to produce hard fibers, and it is of great importance for semiarid regions. Agaves also show potential as bioenergy feedstocks, as they can accumulate large amounts of biomass and fermentable sugar. This study aimed to reconstruct the A. sisalana interactome, and identify key genes and modules involved in multiple plant tissues (root, stem, and leaf) through RNA-Seq analysis. We integrated A. sisalana transcriptome sequences and gene expression generated from stem, leaf, and root tissues to build global and conditional co-expression networks across the entire transcriptome. By combining the co-expression network, module classification, and function enrichment tools, we identified 20 functional modules related to at least one A. sisalana tissue, covering functions such as photosynthesis, leaf formation, auxin-activated signaling pathway, floral organ abscission, response to farnesol, brassinosteroid mediated signaling pathway, and light-harvesting. The final interactome of A. sisalana contains 2,582 nodes and 15,083 edges. In the reconstructed interactome, we identified submodules related to plant processes to validate the reconstruction. In addition, we identified 6 hub genes that were searched for in the co-expression modules. The intersection of hub genes identified by both the protein-protein interaction networks (PPI networks) and co-expression analyses using gene significance and module membership revealed six potential candidate genes for key genes. In conclusion, we identified six potential key genes for specific studies in Agave transcriptome atlas studies, biological processes related to plant survival in unfavorable environments, and provide strategies for breeding programs.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3